Kumar, K. S.; Stein, F.; Palm, M.: An in-situ electron microscopy study of microstructural evolution in a Co–Co2Nb binary alloy. MRS Fall Meeting 2008, Boston, MA, USA (2008)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. 20th Annual Rio Grande Symposium on Advanced Materials 2008, Albuquerque, NM, USA (2008)
Kumar, K. S.; Stein, F.; Palm, M.: Preliminary in-situ TEM observations of phase transformations in a Co–15 at.% Nb alloy. Workshop "The Nature of Laves Phases XI", MPIE Düsseldorf, Germany (2008)
Stein, F.; Ishikawa, S.; Takeyama, M.; Kumar, K. S.; Palm, M.: Phase equilibria in the Cr–Ti system studied by diffusion couples and equilibrated two-phase alloys. Workshop "The Nature of Laves Phases XI", MPI für Eisenforschung, Düsseldorf, Germany (2008)
Stein, F.; Prymak, O.; Dovbenko, O. I.; Palm, M.: Phase equilibria of Laves phases in ternary Nb–X–Al systems with X = Cr, Fe, Co. Discussion Meeting on Thermodynamics of Alloys - TOFA 2008, Krakow, Poland (2008)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. American Conference on Neutron Scattering (ACNS 2008), Santa Fe, New Mexico, USA (2008)
Krein, R.; Palm, M.: The influence of Cr and B additions on the mechanical properties and oxidation behaviour of L21-ordered Fe–Al–Ti based aluminides at high temperature. TMS Annual Meeting 2008, New Orleans, LA, USA (2008)
Brunetti, G.; Krein, R.; Grosdidier, T.; Palm, M.: Evaluation of the Brittle-to-Ductile Transition Temperature (BDTT)and the fracture modes in Fe–Al–X alloys. 4th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Interlaken, Switzerland (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…