Todorova, M.: Selective stabilization of polar oxide surfaces in electrochemical environment. Workshop: The Electrode Potential in Electrochemistry - A Challenge for Electronic Structure Theory Calculations, Schloß Reisensburg, Günzburg, Germany (2017)
Todorova, M.: Free energy sampling for electrochemical systems. Workshop II: Stochastic Sampling and Accelerated Time Dynamics on Multidimensional Surfaces, IPAM, UCLA, Los Angeles, CA, USA (2017)
Todorova, M.: Ab-initio modelling of electrochemical processes: Challenges and insights. Workshop: Fundamental Electrochemistry: Theory Meets Experiment, Leiden, The Netherlands (2017)
Todorova, M.: From semiconductor defect chemistry to electrochemistry: Insight into corrosion mechanisms from ab initio concepts. 57 Sanibel Symposium, St. Simon Island, GA, USA (2017)
Todorova, M.: From semiconductor defect chemistry to electrochemistry: Gaining new insights from computational physics tools. ICCP10 Conference , Macao, China (2017)
Todorova, M.: Oxide stability and defect chemistry in an electrochemical environment: an ab initio perspective. Workshop 2016 der DFG-Forschergruppe 1376 “Elementary reaction steps in electrocatalysis: Theory meets experiment“, Reisensburg, Günzburg, Germany (2016)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Automated calculations for charged point defects in MgO and α-Fe2O3. DPG-Frühjahrstagung 2016, Regensburg, Germany (2016)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Ab initio Determination of Formation Energies and Charge Transfer Levels of Charged Ions in Water. APS 2016, Baltimore, MD, USA (2016)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Ions in Water using ab-initio Molecular Dynamics. DPG Frühjahrstagung 2016, Regensburg, Germany (2016)
Todorova, M.: Electrochemistry from the perspective of semiconductor defect chemistry: New tools and insights. Psi-k Conference, San Sebastian, Spain (2015)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Halide ions (Cl/Br/I) in water from ab-initio Molecular Dyna. Psi-k 2015 Conference, San Sebastián, Spain (2015)
Todorova, M.: Thermodynamic stability of bulk oxides and their defects in an electrochemical environment. 5th Sino-German Symposium, Changchun, China (2015)
Todorova, M.: From semiconductor defect chemistry to electrochemisty: New tools and insights. Workshop “Enabling methods for materials innovation: From quantum to mesoscale”, Gainesville, FL, USA (2015)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
Crystal plasticity modelling has gained considerable momentum in the past 20 years [1]. Developing this field from its original mean-field homogenization approach using viscoplastic constitutive hardening rules into an advanced multi-physics continuum field solution strategy requires a long-term initiative. The group “Theory and Simulation” of…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
This work led so far to several high impact publications: for the first time nanobeam diffraction (NBD) orientation mapping was used on atom probe tips, thereby enabling the high throughput characterization of grain boundary segregation as well as the crystallographic identification of phases.
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.