Roters, F.; Eisenlohr, P.; Bieler, T. R.; Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010), 197 pp.
Janssens, K. G. F.; Raabe, D.; Kozeschnik, E.; Miodownik, M. A.; Nestler, B.: Computational Materials Engineering – An Introduction to Microstructure Evolution. Academic Press, Elsevier, USA (2007), 360 pp.
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, pp. 1347 - 1372 (Eds. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
Friák, M.; Raabe, D.; Neugebauer, J.: Ab Initio Guided Design of Materials. In: Structural Materials and Processes in Transportation, pp. 481 - 495 (Eds. Lehmhus, D.; Busse, M.; Herrmann, A. S.; Kayvantash, K.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2013)
Tikhovskiy, I.; Raabe, D.; Roters, F.: Anwendung der Textur-Komponenten-Kristallplastizitäts-FEM für die Simulation von Umformprozessen unter Berücksichtigung des Texturgradienten. In: Prozessskalierung, Strahltechnik, Tagungsband des 2. Kolloquiums Prozessskalierung im Rahmen des DFG Schwerpunktprogramms Prozessskalierung, Vol. 27, pp. 157 - 166 (Ed. Vollertsen, F.). BIAS-Verlag, Bremen (2005)
Raabe, D.: Drowning in data - A viewpoint on strategies for doing science with simulations. In: Handbook of Materials Modeling, pp. 2687 - 2693 (Ed. Yip, S.). Springer, The Netherlands (2005)
Raabe, D.: Recrystallization Simulation by use of Cellular Automata. In: Handbook of Materials Modeling, pp. 2173 - 2203 (Ed. Yip, S.). Springer, Netherlands (2005)
Raabe, D.; Roters, F.: How do 10^10 crystals co-deform. In: Weitab vom Hookeschen Gesetz -- Moderne Ansätze der Ingenieurpraxis großer inelastischer Deformationen metallischer Werkstoffe (Eds. Kollmann, F. G.; G., G.; Akademie der Wissenschaften und der Literatur, Mainz, Germany). Franz Steiner Verlag, Stuttgart, Germany (2005)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
It is very challenging to simulate within DFT extreme electric fields (a few 1010 V/m) at a surface, e.g. for studying field evaporation, the key mechanism in atom probe tomography (APT). We have developed a straight-forward scheme to incorporate an ideal plate counter-electrode in a nominally charged repeated-slab calculation by means of a generalized dipole correction of the standard electrostatic potential obtained from fully periodic FFT.
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.