Wetscher, F.; Pippan, R.; Šturm, S.; Kauffmann, F.; Scheu, C.; Dehm, G.: TEM investigation of the structural evolution in a pearlitic steel deformed by high pressure torsion. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 37 (6), pp. 1963 - 1968 (2006)
Motz, C.; Kiener, D.; Kirchlechner, C.; Grosinger, W.; Pippan, R.; Dehm, G.: Advances in in-situ testing in scanning electron microscopes: probing mechanical properties at the nano/micro-scale. In: 10th Multinational Congress on Microscopy (MCM 2011), pp. 57 - 58. 10th Multinational Congress on Microscopy (MCM 2011). (2011)
Motz, C.; Kiener, D.; Kirchlechner, C.; Matoy, K.; Wurster, S.; Dehm, G.; Pippan, R.: Determination of micro-mechanical properties: In-situ compression, tension and fracture testing within the SEM. In: 9th Multinational Microscopy Conference 2009, pp. 501 - 502 (Eds. Kothleitner, G.; Leisch, M.). 9th Multinational Microscopy Conference 2009, Graz, Austria, August 30, 2009 - September 04, 2009. Verlag der Technischen Universität Graz, Graz, Austria (2009)
Wetscher, F.; Pippan, R.; Šturm, S.; Kauffmann, F.; Scheu, C.; Dehm, G.: Microstructural evolution of a pearlitic steel during severe plastic deformation. In: 7th Multinational Congress on Microscopy. 7th Multinational Congress on Microscopy, Portorož, Slovenia, June 26, 2005 - June 30, 2005. (2005)
Qin, Y.; Mayweg, D.; Tung, P.-Y.; Pippan, R.; Herbig, M.: Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…