Bieler, T. R.; Crimp, M. A.; Roters, F.; Raabe, D.: Computational modeling of grain boundary microcrack nucleation using a slip interaction based definition of boundary character. Risø National Laboratories, Roskilde, Denmark (2006)
Nikolov, S.; Raabe, D.; Roters, F.: A Constitutive Model for Glassy Polymers with Shear Transformation Zones Plasticity and Reptation-Based Viscoelasticity. MMM Third International Conference Multiscale Materials Modeling, Freiburg, Germany (2006)
Zaafarani, N.; Roters, F.; Raabe, D.: A Study of Deformation and texture Evolution during Nanoindentation in a Cu Single Crystal using Phenomenological and Physically-Based Crystal Plasticity FE Models. MMM Third International Conference Multiscale Materials Modeling, Freiburg, Germany (2006)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative Importance of Nucleation vs. Growth for Recrystallisation of Particle-containing Fe3Al Alloys. Fundamentals of Deformation and Annealing Symposium, Manchester, UK (2006)
Zaafarani, N.; Roters, F.; Raabe, D.: Recent Progress in the 3D Experimentation and Simulation of Nanoindents. Symposium Fundamentals of Deformation and Annealing, Manchester, UK (2006)
Bieler, T. R.; Crimp, M. A.; Ma, A.; Roters, F.; Raabe, D.: A Slip Interaction Based Measure of Damage Nucleation in Grain Boundaries. 3rd International Conference on Multiscale Materials Modeling, Freiburg, Germany (2006)
Raabe, D.: Neues aus der Eisenzeit - Simulationen und Experimente in der Kristallmechanik und frischer Hummer. Kolloquium an der Bundesantalt für Materialforschung (BAM), Berlin, Germany (2006)
Prymak, O.; Stein, F.; Palm, M.; Frommeyer, G.; Raabe, D.: Konstitutionsuntersuchungen im System Nb-Cr-Al: Erste Ergebnisse und weitere Planungen. Workshop: The Nature of Laves Phases VII, MPI für Metallforschung Stuttgart, Germany (2006)
Zambaldi, C.; Roters, F.; Raabe, D.: Spherical indentation modeling for the investigation of primary recrystallization in a single-crystal nickel-base superalloy. Plasticity, Halifax, Canada (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.; Zambaldi, C.: 3D EBSD characterization and crystal plasticity FE simulation of the texture and microstructure below a nanoindent in Cu. Plasticity Conference 2006, Halifax, Canada (2006)
Raabe, D.: Recent Advances in Crystal Mechanics and Chitin Composites. Physics Colloquium at the Physics Department of the Technical University Dresden, Dresden, Germany (2006)
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…