Krein, R.; Schneider, A.; Sauthoff, G.; Frommeyer, G.: High-temperature properties of boride-strengthened Fe3Al-based alloys. 13th International Student's Day of Metallurgy, Leoben, Austria (2006)
Schneider, A.; Inden, G.: Simulation of the kinetics of precipitation reactions in ferritic steels. TMS Annual meeting 2005, Symposium 'Computional thermodynamics and phase transformations', San Francisco, CA, USA (2006)
Palm, M.; Schneider, A.; Stein, F.; Sauthoff, G.: Strengthening of Fe–Al-Based Alloys for High-Temperature Applications. 3rd Disc.Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann-Düsseldorf, Germany (2006)
Hassel, A. W.; Bello Rodriguez, B.; Milenkovic, S.; Schneider, A.: Directionally solidified eutectics as a route for the formation of self organised nanostructures. 56rd Meeting of the International Society of Electrochemistry, Busan, South Korea (2005)
Palm, M.; Schneider, A.; Stein, F.; Sauthoff, G.: Iron-Aluminium-Base Alloys for Structural Applications at High Temperatures: Needs and Prospects. EUROMAT 2005, Prague, Czech Republic (2005)
Bello Rodriguez, B.; Milenkovic, S.; Hassel, A. W.; Schneider, A.: Formation of self-organised nanostructures from directionally solidified eutectic alloys. 12th International Symposium on Metastable and nano Materials (ISMANAM), Paris, France (2005)
Bello Rodriguez, B.; Hassel, A. W.; Schneider, A.: Deposition of Noble Metals on Nanopores for the Formation of Nanodisc Electrodes. 207th Meeting of The Electrochemical Society, Québec City, Canada (2005)
Hassel, A. W.; Milenkovic, S.; Schneider, A.: Preparation of One-Dimensionally Structured Electrode Materials by Directional Solidification. 207th Meeting of The Electrochemical Society, Québec City, Canada (2005)
Eleno, L. T. F.; Balun, J.; Inden, G.; Houserova, J.; Schneider, A.: Experimental study and thermodynamic modelling of the Fe-Ta equilibrium phase diagram. TOFA, Discussion Meeting on Thermodynamics of Alloys, Wien, Austria (2004)
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…