Zaefferer, S.: Microstructure formation and phase transformation mechanisms in low alloyed TRIP steels. Gemeinsames Kolloquium der Institute für Metallkunde, Aachen, Düsseldorf, Ghent und Leuven (2003)
Zaefferer, S.: Some topics of experimental texture and microstructure research at the MPIE. Intern. Workshop on Modern Texture Research in Engineering Materials (MoteX), Düsseldorf (2003)
Zaefferer, S.: Microstructural characterization of low alloyed TRIP steels by SEM and TEM techniques. Seminar des Instituts für Eisenhüttenkunde der RWTH Aachen, RWTH Aachen, Germany (2003)
Zaefferer, S.: Microtexture measurements: A powerful tool to understand microstructures. Fachvortrag bei der Sitzung des Fachbeirates des Instituts, Düsseldorf, Düsseldorf (2003)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Intern. Conf. on Strength of Materials (ICSMA 13), Budapest, Hungary (2003)
Archie, F. M. F.; Zaefferer, S.: Micro-damage initiation in advanced high strength steels (AHSS): Influence of Prior Austenite Grain Boundaries. Meeting Materials 2016 - M2i - Materials innovation institute, Nieuwegein, The Netherlands (2016)
Stechmann, G.; Zaefferer, S.; Konijnenberg, P. J.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Port Elizabeth, South Africa (2016)
Stechmann, G.; Zaefferer, S.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Hamburg, Germany (2015)
Zaefferer, S.; Zhu, Z.; Reed, R. C.: Observation of Dislocation Evolution during Straining of a γ-γ’ Superalloy Single Crystal using the CECCI technique. Eurosuperalloys 2014, Giens, France (2014)
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…