Bastos, A.; Zaefferer, S.; Raabe, D.: Characterization of nanostructured electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD). MRS Spring Meeting, San Francisco, CA, USA (2005)
Zaefferer, S.: Investigation of the Bainitic Phase Transformation in a Low Alloyed TRIP steel using EBSD and TEM. Material Science and Technology 2004, New Orleans, LA, USA (2004)
Zaefferer, S.; Ohlert, J.; Bleck, W.: Influence of thermal treatment on the microstructure and mechanical properties of a low alloyed TRIP steel. Werkstoffwoche 2004, München, Germany (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Investigation of Nucleation Mechanisms of Recrystallization in Warm Rolled Fe3Al Base Alloys. 2nd International Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Zaefferer, S.: High Resolution EBSD Investigations of the Recrystallization Behaviour of a cold rolled Ni3Al single crystal. 2nd International Joint Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Dorner, D.; Lahn, L.; Zaefferer, S.: Investigation of the primary recrystallisation microstructure of cold rolled and annealed Fe3%Si single crystals with Goss orientation. 2nd Joint International Conference on Recrystallization and Grain Growth (Rex&GG2), Annecy, France (2004)
Dorner, D.; Zaefferer, S.: Microstructure and texture of shear bands in cold rolled silicon steel single crystals of Goss orientation. 2nd International Conference on Texture and Anisotropy of Polycrystals (ITAP2), Metz, France (2004)
Zaefferer, S.: Electron backscatter diffraction (EBSD): A powerful tool to understand microstructures. Institutskolloquium im Fachbereich Material-und Geowissenschaften der TU Darmstadt, TU Darmstadt, Germany (2004)
Zaefferer, S.: Microtexture measurements: A powerful tool to understand microstructures. Institusseminar am Institut für metallische Werkstoffe, Ruhr-Universität Bochum, Germany (2004)
Zaefferer, S.; Chen, N.; Dorner, D.: New ideas and investigations concerning the development of the Goss texture. Treffen des Fachausschusses Texturen, Institut für Physik, TU Dresden, Germany (2004)
Zaefferer, S.: The investigation of the correlation between texture and microstructure on a submicrometer scale in the TEM. Seminar des Instituts für Geologie, ETH Zürich, Schweiz (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Sitzung des DFG Fachausschuss Intermetallische Phasen, MPIE, Düsseldorf, Germany (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Treffen des Fachausschusses Intermetallische Phasen, MPI Eisenforschung, Düsseldorf (2004)
Zaefferer, S.: Microstructure formation and phase transformation mechanisms in low alloyed TRIP steels. Gemeinsames Kolloquium der Institute für Metallkunde, Aachen, Düsseldorf, Ghent und Leuven (2003)
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.