Zaefferer, S.: Application of 3-dimensional orientation microscopy to study the microstructure of different heavily deformed metals. Plasticity 2008, Kona, HI, USA (2008)
Romano, P.: Microstructure characterization of multiphase steels (TRIP) using EBSD techniques. Corus Ceramics Research Centre, IJmuiden, The Netherlands (2008)
Raabe, D.; Roters, F.; Ma, D.; Zaefferer, S.; Friák, M.; Zaafarani, N.: Orientation patterning below indents and Bottom-up mechanical design by using quantum mechanics. Symposium Multiscale Plasticity of Crystalline Materials of the International Union of Theoretical and Applied Mechanics (IUTAM), TU Eindhoven, The Netherlands (2007)
Zaefferer, S.: 3D orientation microscopy by combined FIB-serial sectioning EBSD-based orientation microscopy: Principles and applications. FEMMS 2007, Sonoma, USA (2007)
Zaefferer, S.: Possibilities and Limits of Phase Identification by combined Electron Backscatter Diffraction (EBSD) and Energy Dispersive X-ray spectroscopy (EDX). Cacemi-formation EBSD, Université de Metz, France (2007)
Zaefferer, S.: Some ideas on the formation mechanisms and intensity distribution of backscatter Kikuchi patterns. M&M 2007, Microscopy and Microanalysis 2007 Meeting, Ft. Lauderdale, USA (2007)
Zaefferer, S.; Wright, S. I.; Raabe, D.: 3D-orientation microscopy in a FIB SEM: A new dimension of microstructure characterisation. M&M 2007, Microscopy and Microanalysis 2007 Meeting, Ft. Lauderdale, FL, USA (2007)
Raabe, D.; Zaafarani, N.; Roters, F.; Zaefferer, S.: 3D studies on orientation patterning below nanoindents in Cu single crystals using 3D EBSD and crystal plasticity finite element simulations. 3rd Intern. Indentation Workshop, Cavendish Lab., Cambridge, UK (2007)
Zaefferer, S.: 3D orientation microscopy in a FIB-SEM: A new dimension of microstructure characterisation. 10th SFµ Annual Colloquium, Grenoble, France (2007)
Romano, P.; Zaefferer, S.: Identification of Bainite in Al-TRIP Steels using orientation microscopy. 14th Conference on Electron Backscatter Diffraction, New Lanark, Scotland, UK (2007)
Zaefferer, S.: Some ideas on the formation mechanisms and intensity of electron backscatter diffraction patterns. 14th Conference on Electron Backscatter Diffraction, New Lanark, Scotland, UK (2007)
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution