GUO, Y.-l.; Zhang, S.; He, J.; Lu, W.; Jia, L.-n.; Li, Z.; Zhang, H.: Transition from micro-rod to nano-lamella eutectics and its hardening effect in niobium/silicide in-situ composites. Transactions of Nonferrous Metals Society of China (English Edition) 33 (8), pp. 2406 - 2416 (2023)
Moravcik, I.; Zelený, M.; Dlouhý, A.; Hadraba, H.; Moravcikova-Gouvea, L.; Papež, P.; Fikar, O.; Dlouhy, I.; Raabe, D.; Li, Z.: Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments. Science and Technology of Advanced Materials 23 (1), pp. 376 - 392 (2022)
Guo, Y.; Jia, L.; He, J.; Zhang, S.; Li, Z.; Zhang, H.: Interplay between eutectic and dendritic growths dominated by Si content for Nb–Si–Ti alloys via rapid solidification. Journal of Manufacturing Science and Engineering, Transactions of the ASME 144 (6), 061007 (2022)
Peng, J.; Wang, R.; Zhu, M.; Li, Z.; Liu, H.; Mukherjee, A. K.; Hu, T.: 2430% Superplastic strain in a eutectic Au–Sn alloy with micrometer-sized grains maintained by spinodal-like decomposition. Acta Materialia 228, 117766 (2022)
Wang, D.; Lu, X.; Lin, M.; Wan, D.; Li, Z.; He, J.; Johnsen, R.: Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation. Journal of Materials Science & Technology 98, pp. 118 - 122 (2022)
Wang, Z.; Lu, W.; Min Song, F. A.; Ponge, D.; Raabe, D.; Li, Z.; Li, Z.: High stress twinning in a compositionally complex steel of very high stacking fault energy. Nature Communications 13, 3598 (2022)
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.