Herrera, C.; Ponge, D.; Raabe, D.: Influence of the initial microstructure on the hot deformation of duplex stainless steel. 6th European Stainless Steel Conference, Helsinki, Finland (2008)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Microstructure and Texture Evolution during Intercritical Annealing with and without Deformation in the Production of Ultrafine Grained Ferrite/Martensite Dual Phase Steels. 15th International Conference on Textures of Materials (ICOTOM15), Carnegie Mellon University Center in Pittsburgh, PA, USA (2008)
Herrera, C.; Ponge, D.; Raabe, D.: Microtexture Characterization of Duplex Stainless Steel after Hot Working. 15th International Conference on the Texture of Materials (ICOTOM 15), Carnegie Mellon University Center in Pittsburgh, PA, USA (2008)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of Ultrafine Grained Ferrite/Martensite Dual Phase Steel by Large Strain Warm Deformation and Subsequent Intercritical Annealing. ISUGS 2007 (International Symposium on Ultrafine Grained Steels), Kitakyushu, Japan (2007)
Ponge, D.: The formation of ultrafine grained microstructure in a plain C-Mn steel. International Symposium of Ultrafine Grained Steels ISUGS-2007, Kitakyushu, Japan (2007)
Ponge, D.: Warmumformbarkeit von Stahl. Kontaktstudium Werkstofftechnik Stahl, Teil III, Technologische Eigenschaften, Institut für Umformtechnik und Umformmaschinen (IFUM), Universität Hannover (2006)
Ponge, D.: Modern high strength steels for automotive applications. Robust Processes with Modern Steels, INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH, Berlin, Germany (2006)
Romano, P.; Barani, A.; Ponge, D.; Raabe, D.: Design of High-Strength Steels by microalloying and thermomechanical treatment. TMS 2006, San Antonio, TX, USA (2006)
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.