Lhadi, S.; Ahzi, S.; Rémond, Y.; Nikolov, S. D.; Fabritius, H.-O.: Effects of homogenization technique and introduction of interfaces in a multiscale approach to predict the elastic properties of arthropod cuticle. Journal of the Mechanical Behavior of Biomedical Materials 23, pp. 103 - 116 (2013)
Fabritius, H.; Karsten, E. S.; Balasundaram, K.; Hild, S.; Huemer, K.; Raabe, D.: Correlation of structure, composition and local mechanical properties in the dorsal carapace of the edible crab Cancer pagurus. 11, pp. 766 - 776 (2012)
Maniruzzaman, M.; Rahman, M. A.; Gafur, M. A.; Fabritius, H.; Raabe, D.: Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers. Journal of Composite Materials 46, pp. 79 - 90 (2012)
Van Opdenbosch, D.; Johannes, M.; Wu, X.; Fabritius, H.; Zollfrank, C.: Fabrication of high-temperature resistant threedimensional photonic crystals with tunable photonic properties by biotemplating. 4, pp. 516 - 522 (2012)
Fabritius, H.; Sachs, C.; Romano, P.; Raabe, D.: Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the lobster Homarus americanus. Advanced Materials 21, pp. 391 - 400 (2009)
Al-Sawalmih, A.; Li, C.; Siegel, S.; Fabritius, H.; Yi, S. B.; Raabe, D.; Fratzl, P.; Paris, O.: Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster. Advanced Functional Materials 18 (20), pp. 3307 - 3314 (2008)
Sachs, C.; Fabritius, H.; Raabe, D.: Influence of the microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. Journal of Structural Biology 161, pp. 120 - 132 (2008)
Boßelmann, F.; Romano, P.; Fabritius, H.; Raabe, D.: The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochimica Acta 463 (1-2), pp. 65 - 68 (2007)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
Crystal plasticity modelling has gained considerable momentum in the past 20 years [1]. Developing this field from its original mean-field homogenization approach using viscoplastic constitutive hardening rules into an advanced multi-physics continuum field solution strategy requires a long-term initiative. The group “Theory and Simulation” of…
This work led so far to several high impact publications: for the first time nanobeam diffraction (NBD) orientation mapping was used on atom probe tips, thereby enabling the high throughput characterization of grain boundary segregation as well as the crystallographic identification of phases.
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.