Stein, F.; He, C.: The Usefulness and Applicability of the Alkemade Theorem for the Determination of Ternary Phase Diagrams with Intermetallic Phases. TOFA 2014 – 14th Discussion Meeting on Thermodynamics of Alloys, Brno, Czech Republic (2014)
Stein, F.; Li, X.; Palm, M.; Scherf, A.; Janda, D.; Heilmaier, M.: Fe–Al Alloys with Fine-Scaled, Lamellar Microstructure: A New Candidate for Replacing Steels in High-Temperature Structural Applications? 60th Anniversary Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2014)
Stein, F.: Stability, Structure and Mechanical Properties of Transition-Metal-Based Laves Phases. Institut de Chimie et des Matériaux, CNRS-Université Paris Est, Paris, France (2013)
Stein, F.: Experiments on the Peritectoid Decomposition Kinetics of the Intermetallic Phase Nb2Co7. 4th Sino-German Symposium on Computational Thermodynamics and Kinetics and Its Application to Materials Processing, Bochum, Germany (2013)
Stein, F.; Vogel, S. C.: Structure and Stability of the γ Brass-Type High-Temperature Phases in Al-Rich Fe–Al(–Mo) Alloys. Intermetallics 2013, Bad Staffelstein, Germany (2013)
Vogel, S. C.; Brown, D. W.; Okuniewski, M.; Stebner, A.; Stein, F.: Characterization of Intermetallics with the HIPPO & SMARTS Neutron Beam-Lines at LANSCE. Intermetallics 2013, Educational Center Kloster Banz, Bad Staffelstein, Germany (2013)
He, C.; Stein, F.: Thermodynamic Assessment of the Fe–Nb and Fe–Al–Nb Systems. HTMC XIV, 14th International IUPAC Conference on High Temperature Materials, Beijing, China (2012)
Stein, F.; He, C.: Experimental Investigations of the Fe–Al–Nb System: Solidification and Liquidus Surface. HTMC XIV, 14th International IUPAC Conference on High Temperature Materials, Beijing, China (2012)
Stein, F.; Voß, S.; Palm, M.: Mechanical properties of transition-metal laves phases. Plasticity 2012, Symp. on Plasticity and Its Current Applications, San Juan, Puerto Rico (2012)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
Crystal plasticity modelling has gained considerable momentum in the past 20 years [1]. Developing this field from its original mean-field homogenization approach using viscoplastic constitutive hardening rules into an advanced multi-physics continuum field solution strategy requires a long-term initiative. The group “Theory and Simulation” of…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
This work led so far to several high impact publications: for the first time nanobeam diffraction (NBD) orientation mapping was used on atom probe tips, thereby enabling the high throughput characterization of grain boundary segregation as well as the crystallographic identification of phases.
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.