Grabowski, B.: Modern materials design from first-principles: Recent progress and future prospects. Seminar, Imperial College London, London, UK (2015)
Grabowski, B.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. ICAMS Seminar, Ruhr-University Bochum, Bochum, Germany (2015)
Grabowski, B.: Random phase approximation up to the melting point: The impact of anharmonicity and non-local many-body effects on the thermodynamics of Au. MISIS Workshop, Moscow, Russia (2015)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Temperature-dependent coupling of atomic and magnetic degree of freedom from first-principles. Electronic Structure Theory for the Accelerated Design of Structural Materials, Moscow, Russia (2015)
Grabowski, B.; Wippermann, S. M.; Glensk, A.; Hickel, T.; Neugebauer, J.: Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. DPG Spring Meeting 2015, Berlin, Germany (2015)
Hickel, T.; Glensk, A.; Grabowski, B.; Körmann, F.; Neugebauer, J.: Thermodynamics of materials up to the melting point: The role of anharmonicities. Asia Sweden Meeting on Understanding Functional Materials from Lattice dynamics, Guwahati, India (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.