Zaefferer, S.: An overview on techniques for high spatial resolution measurements of plastic and elastic strain by EBSD and related techniques. RexGG pre-conference workshop, Wollongong, Australia (2013)
Zaefferer, S.; Konijnenberg, P. J.: Advanced analysis of 3D EBSD data obtained from FIB-EBSD tomography. RexGG pre-conference workshop, Wollongong, Australia (2013)
Zaefferer, S.: An overview on techniques for high spatial resolution measurements of plastic and elastic strain by EBSD and related techniques. MicroCar 2013, Leipzig, Germany (2013)
Schemmann, L.; Zaefferer, S.: First experiences using a low-energy WDX spectrometer (LEXS) on a FEG-SEM for carbon determination on a martensitic steel. EMAS 2013, Porto, Portugal (2013)
Schemmann, L.; Zaefferer, S.; Raabe, D.: Influence of the inheritance of chemical elements on the transformation behaviour during intercritical annealing of DP steel strips. Euromat 2013, Sevilla, Spain (2013)
Zaefferer, S.: Techniques and application of 3D orientation microscopy based on EBSD tomography. GN-MEBA (groupement nationale de microscopie electronique a balayage) 2013, Paris, France (2013)
Zaefferer, S.: Combined Application of EBSD and ECCI for Crystal Defect Observation in Bulk Samples. GN-MEBA (groupement nationale de microscopie electronique a balayage) 2013, Paris, France (2013)
Zaefferer, S.; Elhami, N. N.: Theory and application of electron channelling contrast imaging (ECCI) of defects in metals. RMS EBSD 2013, Oxford, UK (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…