de la Fuente, D.; Rohwerder, M.: Fundamental investigation on the stability of the steel/coating interfaces contaminated by submicroscopic salt particles. Progress in Organic Coatings 61 (2-4), pp. 233 - 239 (2008)
Hausbrand, R.; Stratmann, M.; Rohwerder, M.: The physical meaning of electrode potentials at metal surfaces and polymer/metal interfaces: Consequences for delamination. Journal of the Electrochemical Society 155 (7), pp. C369 - C379 (2008)
Rohwerder, M.; Michalik, A.: Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochimica Acta 53 (3 SPEC. ISS.), pp. 1301 - 1314 (2007)
Zhong, Q.; Rohwerder, M.; Shi, L.: The effect of ionic penetration on semiconducting behaviour of temporarily protective oil coating on the surface of AISI stainless steel. Materials and Corrosion-Werkstoffe und Korrosion 56 (9), pp. 597 - 605 (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…