Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Würz, R.: Atomic-scale analysis of Cu(In,Ga)Se2 grain boundaries. 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt a. M., Germany (2012)
Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Würz, R.: Study of impurities redistribution inside the cigs absorber layer by atom probe tomography. Photovoltaic Technical Conference - Thin Film & Advanced Silicon Solutions 2012 (PVTC 2012), Aix-en-Provence, France (2012)
Cojocaru-Mirédin, O.; Choi, P.; Schwarz, T.; Würz, R.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in CIGS thin-films solar cells. DPG-Frühjahrstagung Modern, Atom Probe Tomography, TU Berlin, Germany (2012)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in thin-film solar cells. Seminar Talk at Helmholtz Zentrum Berlin (HZB), Berlin, Germany (2012)
Changizi, R.; Lim, J.; Zhang, S.; Schwarz, T.; Scheu, C.: Characterization of KCa2Nb3O10. IAMNano 2019, International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, Düsseldorf, Germany (2019)
Changizi, R.; Zhang, S.; Schwarz, T.; Scheu, C.: Cathodoluminescence and the structural study of Lanthanide-doped oxides. Workshop on Transmission Electron Microscopy (E-MAT), Antwerp, Belgium (2019)
Changizi, R.; Zhang, S.; Schwarz, T.; Scheu, C.: Study of the chemical composition and the luminescent spectra of Lanthanide-doped oxides. E-MRS 2019 Spring Meeting, Nice, France (2019)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Raabe, D.: Characterization of Cu(In,Ga)Se2 grain boundaries using atom probe tomography. 2013 MRS Spring Meeting & Exhibit, San Francisco, CA, USA (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.