Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. AVS 63rd International Symposium & Exhibition, Nashville, TN, USA (2016)
Rohwerder, M.: Novel Approaches for Characterizing the Delamination resistance of Organic Coatings. 230th ECS Meeting-PRiME 2016, Honolulu, HI, USA (2016)
Uebel, M.; Rohwerder, M.: Conducting polymer based anticorrosion composite coatings – acceleration of the trigger signal spreading. 7th Kurt-Schwabe-Symposium 2016, Mittweida, Germany (2016)
Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. 11th International Symposium on Electrochemical Micro & Nanosystem Technologies (EMNT2016), Brussels, Belgium (2016)
Rohwerder, M.; Dandapani, V.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces. 11th International Symposium on Electrochemical Micro & Nanosystem Technologies (EMNT2016), Brussels, Belgium (2016)
Uebel, M.; Vimalanandan, A.; Lv, L.-P.; Crespy, D.; Rohwerder, M.: Dual payload capsules for corrosion protection coatings – importance of the electronic coupling at the metal/capsules interface. 67th Annual Meeting of the International Society of Electrochemistry (ISE) 2016, The Hague, The Netherlands (2016)
Mondragon Ochoa, J. S.; Altin, A.; Rohwerder, M.; Erbe, A.: Surface Modification of Iron With Grafted Hydrophobic Acrylic Polymers and Study of Their Delamination Kinetics. Polymers and Organic Chemistry POC16, Hersonissos (Crete), Greece (2016)
Rohwerder, M.: Die Rasterkelvinsonde: neue Entwicklungen für die Charakterisierung von Korrosionsschutzbeschichtungen. 7. Korrosionsschutz-Symposium, Kloster Irsee, Germany (2016)
Rohwerder, M.: Characterization of Oxides in the Heat Affected Zone. Welding Workshop “Guidelines for use of welded stainless steel in corrosive environments” at TWI, Granta Park, Cambridge, UK (2016)
Tarzimoghadam, Z.; Rohwerder, M.; Merzlikin, S. V.; Bashir, A.; Yedra, L.; Eswara, S.; Ponge, D.; Raabe, D.: On the Role of δ phase in Hydrogen Embrittlement of Alloy 718: Multi-scale H-Mapping in a Ni–Nb Model Alloy. SINTEF and NTNU's Environmental Assisted Cracking (SNEAC) workshop, Trondheim, Norway (2016)
Wengert, A.; Swaminathan, S.; Vogel, A.; Rohwerder, M.: Internal oxidation of high strength steels during short-term annealing: Observation of unexpectedly fast progress of the internal oxidation and first tentative model. EFC Workshop High Temperature Corrosion, Frankfurt, Germany (2015)
Uebel, M.; Vimalanandan, A.; Tran, T. H.; Rohwerder, M.: Coatings for intelligent self-healing of macroscopic defects: first results and the major challenges. eMRS, Symposium „Self-Healing Materials", Warsaw, Poland (2015)
Rohwerder, M.: Selbstheilende Beschichtungen für den Korrosionsschutz: Ein kritischer Überblick. 28. Sitzung des AK “Korrosionsschutz durch Beschichtungen”, GfKorr, Frankfurt, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…