Raabe, D.; Li, Y.; Ponge, D.; Sandlöbes, S.; Choi, P.-P.; Hickel, T.; Kirchheim, R.; Neugebauer, J.: Nanoscale Transformations in Steels. German-Chinese High-level Workshop on “Microstructure-driven Design and Performance of Advanced Metals”, Institute of Metals Research (IMR) of the Chinese Academy of Science (CAS), Shenyang, China (2013)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Abou-Ras, D.; Dietrich, J.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in Cu(In,Ga)Se2 thin-films solar cells. 1st EU APT Workshop, CEA/MINATEC, Grenoble, France (2012)
Cojocaru-Mirédin, O.; Choi, P.; Würz, R.; Abou-Ras, D.; Raabe, D.: Study on internal interfaces in CIGS thin-films solar cells using atom probe tomography. 27th EU PVSEC, Frankfurt, Germany (2012)
Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Würz, R.: Atomic-scale analysis of Cu(In,Ga)Se2 grain boundaries. 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt a. M., Germany (2012)
Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Würz, R.: Study of impurities redistribution inside the cigs absorber layer by atom probe tomography. Photovoltaic Technical Conference - Thin Film & Advanced Silicon Solutions 2012 (PVTC 2012), Aix-en-Provence, France (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…