Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. Materials Science and Engineering A 527, pp. 3552 - 3560 (2010)
Sandim, M. J. R.; Sandim, H. R. Z.; Zaefferer, S.; Raabe, D.; Awaji, S.; Watanabe, K.: Electron backscatter diffraction study of Nb3Sn superconducting multifilamentary wire. Scripta Materialia 62 (2), pp. 59 - 62 (2010)
Demir, E.; Raabe, D.; Zaafarani, N.; Zaefferer, S.: Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Materialia 57, pp. 559 - 569 (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scripta Materialia 61, pp. 737 - 740 (2009)
Imlau, J.; Bleck, W.; Zaefferer, S.: Comparison of damage development in dependence of the local microstructure in low alloyed Al-TRIP-steels, IF steel and a DP steel. Int. J. Materials Research 100, pp. 584 - 593 (2009)
Sato, H.; Zaefferer, S.: A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Materialia 57 (6), pp. 1931 - 1937 (2009)
Sato, H.; Zaefferer, S.; Watanabe, Y.: In-situ Observation of Butterfly-type Martensite in Fe-30mass%Ni Alloy during Tensile Test Using High-resolution EBSD. ISIJ International 49, pp. 1784 - 1791 (2009)
Schestakow, I.; Yi, S.; Zaefferer, S.: Twinning-related microstructural evolution during hot rolling and subsequent annealing of pure magnesium. Materials Science & Engineering A 516, pp. 58 - 64 (2009)
Wu, G.; Zaefferer, S.: Advances in TEM orientation microscopy by combination of dark-field conical scanning and improved image matching. Ultramicroscopy 109, pp. 1317 - 1325 (2009)
Zambaldi, C.; Zaefferer, S.; Wright, S. I.: Characterization of order domains in γ-TiAl by orientation microscopy based on electron backscatter diffraction. Journal of Applied Crystallography 42, pp. 1092 - 1101 (2009)
Bastos, A.; Zaefferer, S.; Raabe, D.: Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co–Ni films. Journal of Microscopy 230, pp. 487 - 498 (2008)
Frommert, M.; Zobrist, C.; Lahn, L.; Böttcher, A.; Raabe, D.; Zaefferer, S.: Texture measurement of grain-oriented electrical steels after secondary recrystallization. Journal of Magnetism and Magnetic Materials 320, pp. e657 - e660 (2008)
Liu, T.; Raabe, D.; Zaefferer, S.: A 3D tomographic EBSD analysis of a CVD diamond thin film. Science and Technology of Advanced Materials 9, 035013 (2008)
Schmücker, M.; Mechnich, P.; Zaefferer, S.; Schneider, H.: Water vapor corrosion of mullite: Single crystals versus polycrystalline ceramics. Journal of the European Ceramic Society 28, pp. 425 - 429 (2008)
Zaefferer, S.; Romano, P.; Friedel, F.: EBSD as a tool to identify and quantify bainite and ferrite in low alloyed Al-TRIP steels. Journal of Microscopy 230, pp. 499 - 508 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…