Sedighiani, K.; Diehl, M.; Roters, F.; Sietsma, J.; Raabe, D.: Obtaining constitutive parameters for a physics-based crystal plasticity model from macro-scale behavior. International Conference on Plasticity, Damage, and Fracture , Panama City, Panama (2019)
Li, Z.; Su, J.; Lu, W.; Wang, Z.; Raabe, D.: Metastable high-entropy alloys: design, structure and properties. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
Seol, J. B.; Ko, W.-S.; Bae, J. W.; Jo, Y. H.; Li, Z.; Choi, P.-P.; Raabe, D.; Kim, H. S.: Transition in boron boundary cohesion from effectiveness to harmfulness with respect to application temperatures: high-entropy alloys and Ni-based superalloys. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
Lu, W.; Li, Z.; Liebscher, C.; Dehm, G.; Raabe, D.: TEM/STEM Investigations of the TRIP Effect in a Dual-Phase High-Entropy Alloy. MRS Fall Meeting, Boston, MA, USA (2018)
Su, J.; Li, Z.; Raabe, D.: Microstructural Design to Improve the Mechanical Properties of an Interstitial TRIP-TWIP High-Entropy Alloy. MRS Fall Meeting , Boston, MA, USA (2018)
Sun, B.; Ponge, D.; Fazeli, F.; Scott, C.; Yue, S.; Raabe, D.: Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. 6th International Conference on Advanced Steels (ICAS 2018), Jeju, South Korea (2018)
Diehl, M.; Kühbach, M.; Raabe, D.: Experimental–computational analysis of primary static recrystallizazion in DC04 steel. 9th International Conference on Multiscale Materials Modeling , Osaka, Japan (2018)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: DAMASK - Düsseldorf Advanced Material Simulation Kit. Seminar of the Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA (2018)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: DAMASK - Düsseldorf Advanced Material Simulation Kit. Seminar of the Department of Mechanical Engineering, Villanova University, Villanova, PA, USA (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…