Rohwerder, M.; Stratmann, M.: Delamination of Polymer/metal Interfaces: On the Role of Electron Transfer Reactions at the Buried Interface. 209th Meeting of The Electrochemical Society, Denver, CO, USA (2006)
Rohwerder, M.: On the role of passive oxides at buried polymer/metal interfaces. The 9th International Symposium on the Passivation of Metals and Semiconductors, and the Properties of Thin Oxide Layers, Paris, France (2005)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of dye molecules from mesostructured microparticles. 104th Bunsentagung, Frankfurt a. M., Germany (2005)
Rohwerder, M.: Delamination von polymeren Beschichtungen: Offene Fragen und neue Ansätze. 1. Korrosionsschutz-Symposium: Korrosionsschutz durch Beschichtungen in Theorie und Praxis, Schlosshotel Villa Rheinfels, St. Goar, Germany (2005)
Ehahoun, H.; Stratmann, M.; Rohwerder, M.: Kinetics of O2-reduction at model interfaces investigated with a scanning Kelvin Probe using an O2-insensitive Ag/AgCl/KCl – tip. ISE Annual Meeting, Thessaloniki, Greece (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: The role of the electrode potential at the buried polymer/metal interface on electrochemically driven delamination: The case MgZn2. ISE Annual Meeting, Thessaloniki, Greece (2004)
Rohwerder, M.; Stratmann, M.: The effect of Oxygen Reduction on the Self-Assembly and Stability of Thiol Monolayer Films. 205th Meeting of the ECS, San Antonio, TX, USA (2004)
Frenznick, S.; Stratmann, M.; Rohwerder, M.: Galvanizing of Defined Model Samples: On the Road to a Fundamental Physical Understanding of Hot-Dip Galvanizing. GALVATECH, Chicago, USA (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: Development of Zinc-Alloy Coatings with Inherent Delamination Stability for Organic Coatings. Galvatech '04, Chicago, IL, USA (2004)
Stratmann, M.; Hausbrand, R.; Rohwerder, M.; Wapner, C.; Grundmeier, G.: Surface Modification of Iron based Alloys for Improved Corrosion Resistance and Adhesion. 13th Asian Pacific Corrosion Control Conference, Corrosion Symposium in NIMS, Tsukuba, Japan (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…