Cherevko, S.; Geiger, S.; Kasian, O.; Mingers, A. M.; Mayrhofer, K. J. J.: Oxygen evolution activity and stability of iridium in acidic media. Part 2. – Electrochemically Grown Hydrous Iridium Oxide. Journal of Electroanalytical Chemistry 774, pp. 102 - 110 (2016)
Ledendecker, M.; Mondschein, J. S.; Žeradjanin, A. R.; Cherevko, S.; Geiger, S.; Schalenbach, M.; Schaak, R. E.; Mayrhofer, K. J. J.: Stability of binary metallic ceramics in the HER reaction - feasible HER electrocatalysts in acidic medium? In Abstracts of Papers of the American Chemical Society, 254, 350. 254th National Meeting and Exposition of the American-Chemical-Society
(ACS) on Chemistry's Impact on the Global Economy, Washington, DC, August 20, 2017 - August 24, 2017. (2017)
Geiger, S.; Cherevko, S.; Mayrhofer, K. J. J.: Platinum dissolution in presence of chlorides. 3rd Ertl Symposium on Surface Analysis and Dynamics
, Berlin, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…