Amberger, D.; Eisenlohr, P.; Göken, M.: On the importance of a connected hard-phase skeleton for the creep resistance of Mg alloys. Acta Materialia 60, pp. 2277 - 2289 (2012)
Lebensohn, R.A.; Kanjarla, A.K.; Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. International Journal of Plasticity 32-33, pp. 59 - 69 (2012)
Yang, Y.; Wang, L.; Zambaldi, C.; Eisenlohr, P.; Barabash, R.; Liu, W.; Stoudt, M. R.; Crimp, M. A.; Bieler, T. R.: Characterization and Modeling of Heterogeneous Deformation in Commercial Purity Titanium. Journal of Microscopy 63 (9), pp. 66 - 73 (2011)
Blum, W.; Eisenlohr, P.: Structure Evolution and Deformation Resistance in Production and Application of Ultrafine-grained Materials -- the Concept of Steady-state Grains. Materials Science Forum 683, pp. 163 - 181 (2011)
Mekala, S.; Eisenlohr, P.; Blum, W.: Control of dynamic recovery and strength by subgrain boundaries - Insights from stress-change tests on CaF2 single crystals. Philosophical Magazine A 91 (6), pp. 908 - 931 (2011)
Yang, Y.; Wang, L.; Bieler, T.; Eisenlohr, P.; Crimp, M.: Quantitative Atomic Force Microscopy Characterization and Crystal Plasticity Finite Element Modeling of Heterogeneous Deformation in Commercial Purity Titanium. Metallurgical and Materials Transactions A 42 (3), pp. 636 - 644 (2011)
Amberger, D.; Eisenlohr, P.; Göken, M.: Influence of microstructure on creep strength of MRI 230D Mg alloy. Journal of Physics: Conference Series 240 (1), 012068, pp. 01268-1 - 01268-4 (2010)
Blum, W.; Eisenlohr, P.: A simple dislocation model of the influence of high-angle boundaries on the deformation behavior of ultrafine-grained materials. Journal of Physics: Conference Series 240 (1), 012136, pp. 012136-1 - 012136-4 (2010)
Liu, B.; Raabe, D.; Roters, F.; Eisenlohr, P.; Lebensohn, R. A.: Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Modelling and Simulation in Materials Science and Engineering 18 (8), 085005, pp. 085005-1 - 085005-21 (2010)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: A novel grain cluster-based homogenization scheme. Modelling and Simulation in Materials Science and Engineering 18 (1), 015006, pp. 015006-1 - 015006-21 (2010)
Wang, L.; Eisenlohr, P.; Yang, Y.; Bieler, T. R.; Crimp, M. A.: Nucleation of paired twins at grain boundaries in titanium. Scripta Materialia 63, pp. 827 - 830 (2010)
Wang, L.; Yang, Y.; Eisenlohr, P.; Bieler, T. R.; Crimp, M. A.; Mason, D. E.: Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium. Metallurgical and Materials Transactions A 41 (2), pp. 421 - 430 (2010)
Sadrabadi, P.; Eisenlohr, P.; Wehrhan, G.; Stäblein, J.; Parthier, L.; Blum, W.: Evolution of dislocation structure and deformation resistance in creep exemplified on single crystals of CaF2. Materials Science and Engineering A 510-511, pp. 46 - 50 (2009)
Amberger, D.; Eisenlohr, P.; Göken, M.: Microstructural evolution during creep of Ca-containing AZ91. Materials Science and Engineering A 510-511, pp. 398 - 402 (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…