Jenko, D.; Palm, M.: Transmission electron microscopy of the Fe–Al–Ti–B alloys with additions of Mo. 19th International Microscopy Congress (IMC19), Sidney, Australia (2018)
Prokopčáková, P.; Švec, M.; Lotfian, S.; Palm, M.: Microstructure – property relationships of iron aluminides. 64. Metallkunde-Kolloquium Montanuniversität Leoben, Lech am Arlberg, Austria (2018)
Peng, J.; Moszner, F.; Vogel, D.; Palm, M.: Influence of the Al content on the aqueous corrosion resistance of binary Fe–Al alloys in H2SO4. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany (2017)
Peng, J.; Vogel, D.; Palm, M.: Influence of the Al content on the corrosion resistance of binary Fe–Al alloys in H2SO4. EUROMAT 2017 – European Congress and Exhibition on Advanced Materials and Processes, Thessaloniki, Greece (2017)
Palm, M.: Development and processing of advanced iron aluminide alloys for application at high temperatures. 62. Metallkunde Kolloquium
, Lech am Arlberg, Austria (2016)
Marx, V. M.; Palm, M.: The wet and hot corrosion behavior of iron aluminides. THERMEC 2016 – Int. Conf. on Processing & Manufacturing of Advanced Materials
, Graz, Austria (2016)
Palm, M.: Iron aluminides: From alloy development to processing. The Materials Chain from Discovery to Production (contributed talk), Bochum, Germany (2016)
Hasemann, G.; Gang, F.; Palm, M.; Bogomol, I.; Krüger , M.: Determining the ternary eutectic alloy composition on the Mo-rich side of the Mo–Si–B system. Advances in Materials & Processing Technologies – AMPT 2015, Madrid, Spain (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this EU Horizon project, we at MPIE, will focus on the sustainable pre-reduction of manganese ores with hydrogen, especially the kinetic analysis of the reduction process using thermogravimetry analysis and an in-depth understand the role of microstructure and local chemistry in the reduction process.
Understanding the deformation mechanisms observed in high performance materials, such as superalloys, allows us to design strategies for the development of materials exhibiting enhanced performance. In this project, we focus on the combination of structural information gained from electron microscopy and compositional measurements from atom probe…
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…