Calcagnotto, M.; Ponge, D.; Demir, E.; Raabe, D.; Zaefferer, S.: 3D-EBSD Investigation on Orientation Gradients and Geometrically Necessary Dislocations Induced by the Martensitic Phase Transformation in Ultrafine Grained Dual-Phase Steels. Interdisciplinary Symposium on 3D Microscopy, Interlaken, Switzerland (2009)
Khorashadizadeh, A.; Winning, M.; Zaefferer, S.; Raabe, D.: 3D tomographic EBSD characterization of crystal topology in a CuZr alloy processed by equal channel angular pressing. Interdisciplinary Symposium on 3D Microscopy, Interlaken, Switzerland (2009)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Fundamental materials-design limits in ultra light-weight Mg-Li alloys determined from ab initio calculations. Seminar in the Department of Low Dimensional Structures and Metastable Phases at the Max Planck Institute for Metals Research, Stuttgart, Germany (2009)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Ab initio determined materials-design limits in ultra light-weight Mg-Li alloys. Seminar in the Department of Strukture at the Institute of Physics of Materials of the Academy of Sciences of the Czech Republic and Institute of Chemistry of the Faculty of Sciences of Masaryk University, Brno, Czech Republic (2009)
Friák, M.; Sander, B.; Ma, D.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Ab-initio based multi-scale approaches to the elasticity of polycrystals. Seminar at the Department of Physical Metallurgy and Materials Testing at Montan Universität Leoben, Leoben, Austria (2009)
Dmitrieva, O.; Dondl, P.; Müller, S.; Raabe, D.: Microstructure in shear deformed copper single crystals. Final meeting of the Research Group 797, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Quantitative electron channelling contrast imaging: A promising tool for the study of dislocation structures in SEM. Electron Backscatter Diffraction Meeting, Swansea, UK (2009)
Khorashadizadeh, A.; Raabe, D.; Winning, M.: Microstructure and texture evolution during high pressure torsion of a Cu0.17wt%Zr alloy. DPG Frühjahrstagung 2009, Dresden, Germany (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Multi-physical alloy approaches to solid solution strengthening of Al. Deutsche Physikalische Gesellschaft 2009, Dresden, Germany (2009)
Ma, D.; Raabe, D.; Roters, F.; Maaß, R.; Van Swygenhoven, H.: Crystal Plasticity finite element method study on small scale plasticity. Deutsche Physikalische Gesellschaft 2009, Dresden, Germany (2009)
Dmitrieva, O.; Dondl, P.; Müller, S.; Raabe, D.: Structural investigations of the orientation patterning in plastically deformed single crystals. TMS 2009 Annual Meeting, San Francisco, CA, USA (2009)
Fabritius, H.; Hild, S.; Nikolov, S.; Ziegler, A.; Raabe, D.; Friák, M.; Neugebauer, J.: Variations in the constructional morphology of crustacean skeletal elements at different hierarchical levels. Third International Conference on Mechanics of Biomaterials & Tissues ICMOBT 2009, Clearwater, FL, USA (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…