Zhang, S.; Kim, S.-H.; Mingers, A. M.; Gault, B.; Scheu, C.: Operando Study on the corrosion of photo-electrocatalysts. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Kangwon National University, Chuncheon-si, South Korea (2023)
Zhang, S.: Microstructure design in thermoelectric materials: in situ observation of doping behavior and role of grain boundary phases. Colloqium, Ruhr-Universität Bochum, Bochum, Germany (2023)
Zhang, S.: Microstructure design in thermoelectric materials: Decoupling the transport properties and in situ observation at operation conditions. Colloqium, TU Darmstadt, Darmstadt, Germany (2023)
Scheu, C.; Zhang, S.: Hematite for light induced water splitting – improving efficiency by tuning distribution of Sn dopants at the atomic scale. Karlsruher Werkstoffkolloquium_Digital (2021)
Zhang, S.: Electron Microscopy. DGK-AK20 Summer School “Synthesis and characterization of inorganic functional materials”, Mülheim (Ruhr), Germany (2019)
Scheu, C.; Zhang, S.: Effect of interfaces on the photoelectrochemical performance of functional oxides. PICS3 2019 Meeting, Centre Interdisciplinaire de Nanoscience de Marseille, Marseille, France (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
Grain boundaries are one of the most prominent defects in engineering materials separating different crystallites, which determine their strength, corrosion resistance and failure. Typically, these interfaces are regarded as quasi two-dimensional defects and controlling their properties remains one of the most challenging tasks in materials…
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.