Ponge, D.; Tarzimoghadam, Z.; Klöwer, J.; Raabe, D.: Hydrogen-assisted Failure in Ni-base Superalloy 718 Studied under In-situ Hydrogen Charging: The Role of Localized Deformation in Crack Propagation. TMS 2017 Annual Meeting & Exhibition, San Diego, CA, USA (2017)
Springer, H.; Raabe, D.; Belde, M. M.: Rapid Alloy Prototyping – High Throughput Bulk Metallurgy at the MPIE. Workshop on machine learning and data analytics in advanced metals processing, RollsRoyce Institute Manchester, Manchester, UK (2017)
Diehl, M.; Cereceda, D.; Wong, S. L.; Reuber, J. C.; Roters, F.; Raabe, D.: From Phenomenological Descriptions to Physics-based Constitutive Models EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials. EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials
, Aberdeen, Scotland (2016)
Ponge, D.; Kuzmina, M.; Herbig, M.; Sandlöbes, S.; Raabe, D.: Segregation and Austenite Reversion at Dislocations in a Binary Fe–9%Mn Steel Studied by Correlative TEM-atom Probe Tomography. The 3rd International Conference on High Manganese Steels, Chengdu, China (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.