Springer, H.; Baron, C.; Tanure, L.; Rohwerder, M.: A combinatorial study of the effect of Al and Cr additions on the mechanical, physical and corrosion properties of Fe. Materials Today Communications 29, 102947 (2021)
Baron, C.; Werner, H.; Springer, H.: On the effect of carbon content and tempering on mechanical properties and stiffness of martensitic Fe–18.8Cr–1.8B–xC high modulus steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 809, 141000 (2021)
Baron, C.; Springer, H.: Property-Driven Development of Metallic Structural Materials by Combinatorial Techniques on the Example of Fe–C–Cr Steels. Steel Research International 90 (12), 1900404 (2019)
Baron, C.; Springer, H.; Raabe, D.: Development of high modulus steels based on the Fe – Cr – B system. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 724, pp. 142 - 147 (2018)
Baron, C.; Springer, H.; Raabe, D.: Combinatorial screening of the microstructure–property relationships for Fe–B–X stiff, light, strong and ductile steels. Materials and Design 112, pp. 131 - 139 (2016)
Baron, C.; Springer, H.; Raabe, D.: Effects of Mn additions on microstructure and properties of Fe–TiB2 based high modulus steels. Materials and Design 111, pp. 185 - 191 (2016)
Baron, C.; Springer, H.; Raabe, D.: Efficient liquid metallurgy synthesis of Fe–TiB2 high modulus steels via in-situ reduction of titanium oxides. Materials and Design 97, pp. 357 - 363 (2016)
Springer, H.; Aparicio-Fernández, R.; Duarte, M. J.; Zhang, H.; Baron, C.; Kostka, A.; Raabe, D.: Alloy design and processing routes for novel high modulus steels. In: PTM 2015 - Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, p. 981 (Eds. Chen, L.-Q.; Militzer, M.; Botton, G.; Howe, J.; Sinclair, C. W. et al.). International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, PTM 2015, Whistler, BC, Canada, June 28, 2015 - July 03, 2015. PTM 2015, Whistler, British Columbia (2015)
Baron, C.; Springer, H.; Raabe, D.: Design of cost-efficient high modulus steels as innovative lightweight materials. Advanced Composite Materials Congress, Stockholm, Sweden (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.