Fabritius, H.-O.; Enax, J.; Wu, X.; Epple, M.; Raabe, D.: Structure-property relations in biological composite materials: An inspiration source for synthetic materials. 79th Annual Meeting of the DPG and DPG Spring Meeting 2015, Berlin, Germany (2015)
Fabritius, H.-O.: Alternative Präparationsmethoden für nichtmetallische Werkstoffe. Fachtagung Mikroskopie und Präparation (mikpräp) der Gesellschaft für Materialografie Rhein Ruhr e.V. (gmr2), Solingen, Germany (2015)
Fabritius, H.-O.: Structure-property relations in biological composite materials – The arthropod exoskeleton. Chemical Engineering and Materials Science Seminar, Michigan State University, East Lensing, MI, USA (2014)
Enax, J.; Fabritius, H.-O.; Roters, F.; Raabe, D.; Epple, M.: Synthetic dental composite materials inspired by the hierarchical organization of shark tooth enameloid. Third winter school within the DFG priority programme 1420 "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials", Potsdam, Germany (2014)
Huber, J.; Fabritius, H.-O.; Griesshaber, E.; Schmahl, W. W.; Ziegler, A. S.: Varying mechanical properties within the incisive cuticle of the terrestrial isopod Porcellio scaber resulting from region-dependent ultrastructure, elemental distribution and arrangement of calcite crystals. DGM Bio-inspired Materials: International Conference on Biological Material Science, Potsdam, Germany (2014)
Fabritius, H.-O.: Structure-property relations in biological composite materials. Seminar, Department of Earth- and Environmental Sciences, LMU Munich, München, Germany (2014)
Fabritius, H.-O.; Hennig, S.; Hild, S.; Soor, C.; Ziegler, A. S.: Influence of Near-Physiological Salines and Organic Matrix Proteins from Sternal ACC-Deposits of Porcellio scaber on CaCO3 Precipitation. 12th International Symposium on Biomineralization, Freiberg, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.