Fenster, J. C.; Rohwerder, M.; Hassel, A. W.: The impedance-titrator: A novel setup to perform automated pH-dependent electrochemical experiments. Materials and Corrosion-Werkstoffe und Korrosion 60 (11), pp. 855 - 858 (2009)
Chen, Y.; Schuhmann, W.; Hassel, A. W.: Electrocatalysis on gold nanostructures: Is the {110} facet more active than the {111} facet? Electrochem. Comm. 11, pp. 2036 - 2039 (2009)
Mardare, A. I.; Hassel, A. W.: Quantitative optical recognition of highly reproducible ultra thin oxide films in microelectrochemical anodisation. Rev. Sci Instrum. 80, pp. 046106-1 - 046106-3 (2009)
Mardare, A. I.; Savan, A.; Ludwig, A.; Wieck, A. D.; Hassel, A. W.: A combinatorial passivation study of Ta–Ti alloys. Corrosion Science 51, pp. 1519 - 1527 (2009)
Mardare, A. I.; Savan, A.; Ludwig, A.; Wieck, A. D.; Hassel, A. W.: High-throughput synthesis and characterization of anodic oxides on Nb–Ti alloys. Electrochimica Acta 54, pp. 5973 - 5980 (2009)
Mardare, A. I.; Savan, A.; Ludwig, A.; Wieck, A. D.; Hassel, A. W.: High throughput study of the anodic oxidation of Hf–Ti thin films. Electrochimica Acta 54, pp. 5171 - 5178 (2009)
Milenkovic, S.; Smith, A. J.; Hassel, A. W.: Single crystalline Molybdenum nanowires and nanowire arrays. J. Nanosci. Nanotechnol. 9 (6), pp. 3411 - 3417(7) (2009)
Mozalev, A.; Smith, A. J.; Borodin, S.; Plihauka, A.; Hassel, A. W.; Sakairi, M.; Takahashi, H.: Growth of multioxide planar film with the nanoscale inner structure via anodizing Al/Ta layers on Si. Electrochim. Acta 54, pp. 935 - 945 (2009)
Bello Rodriguez, B.; Hassel, A. W.: Passivity of a Nanostructured ds-NiAl–Re Alloy as Substrate for the Electrodeposition of Gold. Journal of the Electrochemical Society 155 (3), pp. K31 - K37 (2008)
Bello Rodriguez, B.; Hassel, A. W.: Electrochemical Nucleation and Growth of Gold on Rhenium Nanowires. J. Electrochem. Plat. Technol. 1, pp. 47 - 55 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…