Hassel, A. W.; Seo, M.: Localised Photoelectrochemical Measurement with the Scanning Droplet Cell. Passivity and Localized Corrosion: International Symposium in Honor of Professor Norio Sato. Electrochem. Soc. Proc. PV 99-27, pp. 337 - 342 (1999)
Hassel, A. W.; Seo, M.: The Scanning Droplet Cell: Experimental Results and Determination of the Potential Distribution. Proceed. Japan Soc. Corr. Engineer. Mater. Environments 1998, pp. 293 - 296 (1998)
Hassel, A. W.: Elektronische und ionische Transportprozesse in ultradünnen Aluminiumoxidschichten. Oberflächentechnik '95, DGO Jahrestagung 33, pp. 31 - 34 (1995)
Venzlaff, H.; Enning, D.; Widdel, F.; Stratmann, M.; Hassel, A. W.: A new model for microbiologically influenced corrosion. The European Corrosion Congress Eurocorr 2010, Moscow, Russia (2010)
Mardare, A. I.; Ludwig, A.; Savan, A.; Wieck, A. D.; Hassel, A. W.: High throughput growth and in situ characterization of anodic oxides on Ti, Ta and Hf combinatorial alloys. “Electrochemistry: Crossing Boundaries”, GDCh, Gießen, Germany (2008)
Fenster, J. C.; Rohwerder, M.; Hassel, A. W.: Impedance-Titration: A Novel Method for Understanding the Kinetics of Corrosion in Aqueous Solutions. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spanien (2008)
Hassel, A. W.: Progress in the Electrochemical Processing of Directionally Solidified Eutectics. 7th International Symposium on Electrochemical Micro- and Nanosystems, Ein-Gedi, Israel (2008)
Hassel, A. W.; Milenkovic, S.; Smith, A. J.: Nanowires and Nanowire Arrays by an Electrochemical Structuring of Directionally Solidified Eutectics. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Mardare, A. I.; Wieck, A. D.; Hassel, A. W.: Combinatorial microelectrochemistry using an automated scanning droplet cell. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spanien (2008)
Stratmann, M.; Hassel, A. W.; Rohwerder, M.: Microelectrochemical Investigations of Interfaces and Surfaces of Advanced Materialks. 7th International Symposium on Electrochemical Micro- and Nanosystems, Ein-Gedi, Israel (2008)
Venzlaff, H.; Widdel, F.; Stratmann, M.; Hassel, A. W.: Microbial corrosion induced by a new highly aggressive SRB strain. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Hassel, A. W.: Tailoring of Nanostructured Alloys by Anodisation. International Smposium on Anodizing Science and Technology 2008, Rusutsu, Japan (2008)
Mardare, A. I.; Wieck, A. D.; Hassel, A. W.: High throughput synthesis and characterization of anodic oxides on valve metal combinatorial libraries. 2nd International IMPRS-SurMat Workshop on Surface and Interface Engineering in Advanced Materials, Bochum, Germany (2008)
Chen, Y.; Milenkovic, S.; Hassel, A. W.: Fabrication of Iso-oriented Gold Nanobelt Arrays from an Fe–Au Eutectoid. 9th International Conference on Nanostructured Materials, Rio de Janerio, Brazil (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.