Lu, W.; Li, Z.; Liebscher, C.; Dehm, G.; Raabe, D.: TEM/STEM Investigations of the TRIP Effect in a Dual-Phase High-Entropy Alloy. MRS Fall Meeting, Boston, MA, USA (2018)
Su, J.; Li, Z.; Raabe, D.: Microstructural Design to Improve the Mechanical Properties of an Interstitial TRIP-TWIP High-Entropy Alloy. MRS Fall Meeting , Boston, MA, USA (2018)
Niendorf, T.; Wegener, T.; Li, Z.; Raabe, D.: On the fatigue behavior of dual-phase high-entropy alloys in the low-cycle fatigue regime. Fatique 2018, Poitiers, France (2018)
Li, Z.; Raabe, D.: Tuning Phase Transformation in Compositionally Complex Alloys for Superior Mechanical Properties. TMS 2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Oh, H. S.; Li, Z.; Kim, J. Y.; Ryu, C. W.; Meyer, A.; Tsuchiya, K.; Raabe, D.; Park, E. S.: Phase Stabilization of High Entropy Alloy under Dynamic Forcing Condition. TMS 2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Li, Z.; Raabe, D.: Designing novel high-entropy alloys towards superior properties. Frontiers in Materials Processing Applications, Research and Technology (FiMPART'2017), Bordeaux, France (2017)
Li, Z.: Designing and understanding novel high-entropy alloys towards superior properties. Talk at Universität Kassel, Institut für Werkstofftechnik, Kassel, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…