Schwarz, T.; Yang, J.; Aota, L. S.; Woods, E.; Zhou, X.; Neugebauer, J.; Todorova, M.; McCaroll, I.; Gault, B.: Analysis of the reactive solid-liquid interface during the corrosion of magnesium at the near atomic level using cryo-atom probe tomography. Aqueous Corrosion Gordon Research Seminar (GRS) 2024, Corrosion Monitoring, Modelling and Mitigation Towards a Sustainable Future, New London, CT, USA (2024)
Schwarz, T.; Woods, E.; Aota, L. S.; Zhou, X.; McCaroll, I.; Gault, B.: Application of cryo-atom probe tomography to study early-stage corrosion mechanism at liquid-solid interfaces at near atomic scale. EuroCorr 2023, Bruessles, Belgium (2023)
Lee, C.-G.; Nallathambi, V.; Kang, T.; Aota, L. S.; Reichenberger, S.; El-Zoka, A.; Choi, P.-P.; Gault, B.; Kim, S.-H.: Magnetocaloric effect of Fe47.5Ni37.5Mn15 bulk and nanoparticles: A cost-efficient alloy for room temperature magnetic refrigeration. arXiv (2024)
Kim, S.-H.; Yoo, Su, S.-H.; Aota, L. S.; El-Zoka, A.; Kang, P. W.; Lee, Y.; Gault, B.: B dopant evolution in Pd catalysts after H evolution/oxidation reaction in alkaline environment. arXiv (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…