Merzlikin, S. V.; Bashir, A.; Rohwerder, M.: Hydrogen embrittlement and traps structure of advanced high strength sheet steel for automotive applications. ICH2P-2014, International Conference on Hydrogen Production, Fukuoka, Japan. (2014)
Merzlikin, S. V.; Rohwerder, M.: Detection of Local Hydrogen Distribution by SIMS. Possibility of the Electrochemical SIMS Calibration for Quantification of Hydrogen in Metallic Matrix. International Symposium on Metal-Hydrogen Systems 2012 (MH2012) , Kyoto, Japan (2012)
Merzlikin, S. V.: Quantitative photoemission depth profiling - A new approach to the surface analysis of real materials. 5. Materialwissenschaftlicher Tag in RUB, Bochum, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.