Dehm, G.: Resolving grain boundary phase transformations by advanced STEM for fcc metals and multinary alloys. 6th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM-2019), Chennai, India (2019)
Dehm, G.: Micro- and Nanomechanical Testing of Materials - From Materials Physics to Materials Design. Convegno Nazionale INSTM XII, Ischia Porto, Italy (2019)
Liebscher, C.; Meiners, T.; Peter, N. J.; Frolov, T.; Dehm, G.: Experimental discovery of grain boundary phase transformations unveiled by atomistic simulations. PICS3 2019 Meeting, Centre Interdisciplinaire de Nanoscience de Marseille, Marseille, France (2019)
Dehm, G.: Do we understand the interplay of microstructure and properties of materials: New insights by advanced microscopy techniques. MPI CPFS, Dresden, Germany (2019)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of binary Cu–X alloys produced by Combinatorial Synthesis. International conference on metallurgical coatings and thin films (ICMCTF) 2019, San Diego, CA, USA (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. Joint Max-Planck-Institut für Eisenforschung MPIE) / Ernst Ruska-Centre (ER-C) Workshop, Düsseldorf, Germany (2019)
Kini, M. K.; Kirchlechner, C.; Dehm, G.: Slip transmission across multiple coherent twin boundaries in nanotwinned Ag. Seminar on "Slip Transmission in nanotwinned Ag", Indian Institute of Science, Department of Materials Engineering, Bangalore, India (2019)
Kini, M. K.; Kirchlechner, C.; Dehm, G.: Slip transmission across multiple coherent twin boundaries in nanotwinned Ag. Seminar on "Slip Transmission in nanotwinned Ag", Indian Institute of Technology, Mumbai, India (2019)
Brinckmann, S.; Dehm, G.: Severe deformation of a lamellar microstructure: pearlitic steel as a case study. TMS 2019 Annual Meeting & Exhibition, San Antonio, TX, USA (2019)
Dehm, G.: Können hohe Festigkeit und Zähigkeit in Verschleißschutzschichten kombiniert werden? Eine grundlegende Untersuchung an Mo2BC. 12. Tagung Gefüge und Bruch, Bochum, Germany (2019)
Kini, M. K.; Kirchlechner, C.; Dehm, G.: On microstructural constraints for slip transfer in nanotwinned silver. ECI conference on nanomechanical testing in materials research and development VII, Malaga, Spain (2019)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Composition Dependence of Mechanical Properties of the Cubic and Hexagonal NbCo2 Laves Phases Studied by Micromechanical Testing. International Workshop on Laves Phases, Düsseldorf, Germany (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…