Amberger, D.; Eisenlohr, P.; Göken, M.: On the importance of a connected hard-phase skeleton for the creep resistance of Mg alloys. Acta Materialia 60, pp. 2277 - 2289 (2012)
Lebensohn, R.A.; Kanjarla, A.K.; Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. International Journal of Plasticity 32-33, pp. 59 - 69 (2012)
Yang, Y.; Wang, L.; Zambaldi, C.; Eisenlohr, P.; Barabash, R.; Liu, W.; Stoudt, M. R.; Crimp, M. A.; Bieler, T. R.: Characterization and Modeling of Heterogeneous Deformation in Commercial Purity Titanium. Journal of Microscopy 63 (9), pp. 66 - 73 (2011)
Blum, W.; Eisenlohr, P.: Structure Evolution and Deformation Resistance in Production and Application of Ultrafine-grained Materials -- the Concept of Steady-state Grains. Materials Science Forum 683, pp. 163 - 181 (2011)
Mekala, S.; Eisenlohr, P.; Blum, W.: Control of dynamic recovery and strength by subgrain boundaries - Insights from stress-change tests on CaF2 single crystals. Philosophical Magazine A 91 (6), pp. 908 - 931 (2011)
Yang, Y.; Wang, L.; Bieler, T.; Eisenlohr, P.; Crimp, M.: Quantitative Atomic Force Microscopy Characterization and Crystal Plasticity Finite Element Modeling of Heterogeneous Deformation in Commercial Purity Titanium. Metallurgical and Materials Transactions A 42 (3), pp. 636 - 644 (2011)
Amberger, D.; Eisenlohr, P.; Göken, M.: Influence of microstructure on creep strength of MRI 230D Mg alloy. Journal of Physics: Conference Series 240 (1), 012068, pp. 01268-1 - 01268-4 (2010)
Blum, W.; Eisenlohr, P.: A simple dislocation model of the influence of high-angle boundaries on the deformation behavior of ultrafine-grained materials. Journal of Physics: Conference Series 240 (1), 012136, pp. 012136-1 - 012136-4 (2010)
Liu, B.; Raabe, D.; Roters, F.; Eisenlohr, P.; Lebensohn, R. A.: Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Modelling and Simulation in Materials Science and Engineering 18 (8), 085005, pp. 085005-1 - 085005-21 (2010)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: A novel grain cluster-based homogenization scheme. Modelling and Simulation in Materials Science and Engineering 18 (1), 015006, pp. 015006-1 - 015006-21 (2010)
Wang, L.; Eisenlohr, P.; Yang, Y.; Bieler, T. R.; Crimp, M. A.: Nucleation of paired twins at grain boundaries in titanium. Scripta Materialia 63, pp. 827 - 830 (2010)
Wang, L.; Yang, Y.; Eisenlohr, P.; Bieler, T. R.; Crimp, M. A.; Mason, D. E.: Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium. Metallurgical and Materials Transactions A 41 (2), pp. 421 - 430 (2010)
Sadrabadi, P.; Eisenlohr, P.; Wehrhan, G.; Stäblein, J.; Parthier, L.; Blum, W.: Evolution of dislocation structure and deformation resistance in creep exemplified on single crystals of CaF2. Materials Science and Engineering A 510-511, pp. 46 - 50 (2009)
Amberger, D.; Eisenlohr, P.; Göken, M.: Microstructural evolution during creep of Ca-containing AZ91. Materials Science and Engineering A 510-511, pp. 398 - 402 (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
Grain boundaries are one of the most prominent defects in engineering materials separating different crystallites, which determine their strength, corrosion resistance and failure. Typically, these interfaces are regarded as quasi two-dimensional defects and controlling their properties remains one of the most challenging tasks in materials…
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.