Frommeyer, G.; Jiménez, J. A.: Structural Superplasticity at Higher Strain Rates of Hypereutectoid Fe-5.5Al-1Sn-1Cr-1.3C Steel. Metallurgical and Materials Transaction 36 A, pp. 295 - 300 (2005)
Gnauk, J.; Wenke, R.; Frommeyer, G.: Macroscopic modeling of solidification processes by performing the generalized enthalpy method. Materials Science and Engineering: A 413-414, pp. 490 - 496 (2005)
Jiménez, J. A.; Carsi, M.; Frommeyer, G.; Knippscheer, S.; Wittig, J.; Ruano, O. A.: The effect of microstructure on the creep behavior of the ti-46al-1Mo-0.2Si alloy. Intermetallics 13, pp. 1021 - 1029 (2005)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Deges, J.; Fischer, R.; Frommeyer, G.; Schneider, A.: Atom probe field ion microscopy investigations on the intermetallic Ni49.5Al49.5Re1 alloy. Surface and Interface Analysis 36, pp. 533 - 539 (2004)
Rablbauer, R.; Fischer, R.; Frommeyer, G.: Mechnical properties of NiAl–Cr alloys in relation to microstructure and atomic defects. Zeitschrift für Metallkunde 95 (6), pp. 525 - 534 (2004)
Fischer, R.; Frommeyer, G.; Schneider, A.: APFIM investigations on site preferences, superdislocations, and antiphase boundaries in NiAl(Cr) with B2 superlattice structure. Materials Science and Engineering A 353, pp. 87 - 91 (2003)
Frommeyer, G.; Brüx, U.; Neumann, P.: Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes. Iron and Steel Institue of Japan International Vol. 43 (3), pp. 438 - 446 (2003)
Frommeyer, G.; Hofmann, H.; Löhr, J.: Structural Superplasticity at High Strain Rates of Super Duplex Stainless Steel Fe-25Cr-7Ni-3Mo-0.3N. Steel Research 74 (5), pp. 338 - 344 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…