Scheu, C.; Zhang, S.: Hematite for light induced water splitting – improving efficiency by tuning distribution of Sn dopants at the atomic scale. Karlsruher Werkstoffkolloquium_Digital (2021)
Scheu, C.; Hengge, K. A.: Insights in the stability of Pt/Ru catalyst and the effect for polymer electrolyte membrane fuel cells. Thermec 2021, Online Conference (2021)
Aymerich Armengol, R.; Lim, J.; Ledendecker, M.; Scheu, C.: The devil is in the details: correlating SMSI catalyst encapsulation layers with electrochemical properties. ElecNano9 2020, online, Paris, France (2020)
Scheu, C.: Atomic-scale characterization of complex solid solution nanoparticles using TEM. Workshop on High Entropy Alloy and Complex Solid Solution Nanoparticles for Electrocatalysis, RUB, online, Bochum, Germany (2020)
Scheu, C.: Co-organizer of the International Seminar Series on the Microstructure of Materials (on-line). International Seminar Series on the Microstructure of Materials, online (2020)
Scheu, C.; Hieke, S. W.: How stable are thin Aluminium films: Dewetting phenomena observed by in-situ electron microscopy. Microscopy Conference 2019 (MC2019), Berlin, Germany (2019)
Scheu, C.; Hieke, S. W.: Fundamentals and Applications of Electron Energy-Loss Spectroscopy in a Scanning Transmission Electron Microscope. Universita' Roma Tre Colloquium, Roma, Italy (2019)
Scheu, C.: Materials for renewable energy applications. Metallurgical Engineering and Materials Science Department Colloquium, Indian Institute of Technology, Mumbai, India (2019)
Frank, A.; Changizi, R.; Scheu, C.: Preparative and analytical challenges in electron microscopic investigation of nanostructured CuInS2 thin films for energy applications. Microscience Microscopy Congress (MMC) 2019, Manchester, UK (2019)
Gänsler, T.; Frank, A.; Betzler, S. B.; Scheu, C.: Electron microscopy studies of Nb3O7(OH) nanostructured cubes - insights in the growth mechanism. Microscience Microscopy Congress MMC2019, Manchester, UK (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.