Scheu, C.: Designing the functional properties of thermoelectric materials by grain boundary engineering. Workshop on New Horizons in Materials Design, MPIE, Düsseldorf, Germany (2023)
Vega-Paredes, M.; Arenas Esteban, D.; Garzón-Manjón, A.; Scheu, C.: How can electron tomography be used for studying the catalyst degradation of fuel cells. Advanced Electron Nanoscopy Group – Institut Catala de Nanociencia I Nanotecnologia, Bellaterra, Spain (2022)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Linnemann, J.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Electron microscopy insights on the mechanism of morphology/phase transformations in manganese oxides. Institut de Nanociència i Nanotecnologia (ICN2), Bellaterra, Spain (2022)
Scheu, C.: Unravelling secrets of interfaces in renewable energy application. 10th International Workshop on Interfaces, Santiago de Compostela, Spain (2022)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Mechanism of coupled phase/morphology transformation of 2D manganese oxides through Fe galvanic exchange reaction. Chemistry Department Seminar, Kangwon National University, Chuncheon, South Korea (2022)
Scheu, C.: Insight in the structure and stability of (photo)catalysts. Graduiertenkollegs GRK1896 „In situ microsopy with electrons, X-rays and scanning probes: Abschlusssymposium, Erlangen, Germany (2022)
Scheu, C.: Tracing impurities and structural defects in energy materials using advanced scanning transmission electron microscopy and atom probe tomography. Retreat Lotsch Group, Schloss Fürstenried, München, Germany (2022)
Vega-Paredes, M.; Garzón-Manjón, A.; Rivas Rivas, N. A.; Berova, V.; Hengge, K. A.; Gänsler, T.; Jurinsky, T.; Scheu, C.: Ruthenium-Platinum Core-Shell Nanoparticles as durable, CO tolerant catalyst for Polymer Electrolyte Membrane Fuel Cells. 5th International Caparica Symposium on Nanoparticles/Nanomaterials and Applications (ISN2A), Online (accepted)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…