Harzer, T. P.; Duarte, M. J.; Dehm, G.: In–situ TEM study of diffusion kinetics and electron irradiation effects on the Cr phase separation of a nanocrystalline Cu–4 at.% Cr thin film alloy. Journal of Alloys and Compounds 695, pp. 1583 - 1590 (2017)
Harzer, T. P.; Dehm, G.: Stability, phase separation and oxidation of a supersaturated nanocrystalline Cu–33 at.% Cr thin film alloy. Thin Solid Films 623, pp. 48 - 58 (2017)
Brinckmann, S.; Kirchlechner, C.; Dehm, G.: Stress intensity factor dependence on anisotropy and geometry during micro-fracture experiments. Scripta Materialia 127, pp. 76 - 78 (2017)
Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J.: Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research. Accounts of Chemical Research 49 (9), pp. 2015 - 2022 (2016)
Philippi, B.; Kirchlechner, C.; Micha, J.-S.; Dehm, G.: Size and orientation dependent mechanical behavior of body-centered tetragonal Sn at 0.6 of the melting temperature. Acta Materialia 115, pp. 76 - 82 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.