Bashir, A.; Heck, A.; Narita, A.; Feng, X.; Nefedov, A.; Rohwerder, M.; Müllen, K.; Elstner, M.; Wöll, C. H.: Charge carrier mobilities in organic semiconductors: crystal engineering and the importance of molecular contacts. Physical Chemistry Chemical Physics 17 (34), pp. 21988 - 21996 (2015)
Merzlikin, S. V.; Borodin, S.; Vogel, D.; Rohwerder, M.: Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals. Talanta 136, pp. 108 - 113 (2015)
Auinger, M.; Müller-Lorenz, E. M.; Rohwerder, M.: Modelling and experiment of selective oxidation and nitridation of binary model alloys at 700 degrees C - The systems Fe, 1 wt.%{Al, Cr, Mn, Si}. Corrosion Science 90, pp. 503 - 510 (2015)
Luo, Y.; Wang, X.; Guo, W.; Rohwerder, M.: Growth behavior of initial product layer formed on Mg alloy surface induced by polyaniline. Journal of the Electrochemical Society 162 (6), pp. C294 - C301 (2015)
Auinger, M.; Vogel, A.; Vogel, D.; Rohwerder, M.: Early stages of oxidation observed by in situ thermogravimetry in low pressure atmospheres. Corrosion Science 86, pp. 183 - 188 (2014)
Rohwerder, M.: Special edition on the occasion of the 60th birthday of Martin Stratmann. Materials and Corrosion-Werkstoffe und Korrosion 65 (4), p. 344 - 344 (2014)
Vimalanandan, A.; Bashir, A.; Rohwerder, M.: Zn–Mg and Zn–Mg–Al alloys for improved corrosion protection of steel: Some new aspects. Materials and Corrosion - Werkstoffe und Korrosion 65 (4), pp. 392 - 400 (2014)
Auinger, M.; Vogel, A.; Praig, V. G.; Danninger, H.; Rohwerder, M.: Thermogravimetry and insitu mass spectrometry at high temperatures compared to theoretical modelling - The weight loss during selective decarburisation at 800 °C. Corrosion Science 78, pp. 188 - 192 (2014)
Krieg, R.; Vimalanandan, A.; Rohwerder, M.: Corrosion of Zinc and Zn–Mg Alloys with Varying Microstructures and Magnesium Contents. Journal of the Electrochemical Society 161 (3), pp. C156 - C161 (2014)
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.