Pizzagalli, L.; Dehm, G.; Thomas, O.: Structure and dynamics V: Mechanical properties at small scales. Condensed Matter in Paris: Mini-colloquium 32, Paris, France (2014)
Dehm, G.: From idealized bi-crystals towards applied polycrystals: Plastic deformation in small dimensions. 2013 MRS Fall Meeting, Boston, MA, USA (2013)
Dehm, G.: Structure and Micromechanics of Materials. Materialwissenschaftliches Kolloquium ICAMS und Institut für Werkstoffe, RUB, Bochum, Germany (2013)
Dehm, G.: Probing deformation phenomena at small length scales. ECI on Nanomechanical Testing in Materials Research and Development IV, Olhão, Portugal (2013)
Dehm, G.: Atomic resolution interface study of VN and Cu films on MgO using Cs corrected TEM. Microscopy Conference MC 2013, Regensburg, Germany (2013)
Dehm, G.: Struktur und Nano-/Mikromechanik von Materialien. Vorstandssitzung des Stahlinstituts VDEh und der Wirtschaftsvereinigung Stahl, Düsseldorf, Germany (2013)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.