Zeng, X. H.; Eisenlohr, P.; Blum, W.: Modelling the transition from strengthening to softening due to grain boundaries. Material Science and Engineering A 483-484, pp. 95 - 98 (2008)
Raabe, D.; Ma, D.; Roters, F.: Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Materialia 55 (13), pp. 4567 - 4583 (2007)
Han, C. S.; Ma, A.; Roters, F.; Raabe, D.: A Finite Element approach with patch projection for strain gradient plasticity formulations. International Journal of Plasticity 23, pp. 690 - 710 (2007)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive law for BCC materials in crystal plasticity FEM. Computational Materials Science 39, pp. 91 - 95 (2007)
Tikhovskiy, I.; Raabe, D.; Roters, F.: Simulation of earing during deep drawing of an Al-3%Mg alloy (AA 5754) using a texture component crystal plasticity FEM. Journal of Materials Processing Technology 183, pp. 169 - 175 (2007)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Iso-Work-Rate Weighted-Taylor Homogenization Scheme for Multiphase Steels Assisted by Transformation-induced Plasticity Effect. Steel Research International 78 (10/11), pp. 777 - 783 (2007)
Zambaldi, C.; Roters, F.; Raabe, D.; Glatzel, U.: Modeling and experiments on the indentation deformation and recrystallization of a single‑crystal nickel-base superalloy. Materials Science and Engineering A 454–455, pp. 433 - 440 (2007)
Han, C. S.; Roters, F.; Raabe, D.: On strain gradients and size-dependent hardening descriptions in crystal plasticity frameworks. Metals and Materials International 12, 5, pp. 407 - 411 (2006)
Ma, A.; Roters, F.; Raabe, D.: On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – Theory, experiments, and simulations. Acta Materialia 54 (8), pp. 2181 - 2194 (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.: Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Materialia 54 (7), pp. 1707 - 1994 (2006)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Materialia 54, pp. 2169 - 2179 (2006)
Ma, A.; Roters, F.; Raabe, D.: Studying the effect of grain boundaries in dislocation density based crystal plasticity finite element simulations. International Journal of Solids and Structures 43, pp. 7287 - 7303 (2006)
Tikhovskiy, I.; Raabe, D.; Roters, F.: Simulation of the deformation texture of a 17%Cr ferritic stainless steel using the texture component crystal plasticity FE method considering texture gradients. Scripta Materialia 54, pp. 1537 - 1542 (2006)
Raabe, D.; Wang, Y.; Roters, F.: Crystal plasticity simulation study on the influence of texture on earing in steel. Computational Materials Science 34, pp. 221 - 234 (2005)
Roters, F.: Application of the crystal plasticity FEM from single crystal to bulk polycrystal. Computational Materials Science 32, pp. 509 - 517 (2005)
Ma, A.; Roters, F.: A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals. Acta Materialia 52, pp. 3603 - 3612 (2004)
Ma, A.; Roters, F.; Raabe, D.: Numerical study of textures and Lankford values for FCC polycrystals by use of a modified Taylor model. Computational Materials Science 29, 3, pp. 259 - 395 (2004)
Raabe, D.; Roters, F.: Using texture components in crystal plasticity finite element simulations. International Journal of Plasticity 20, pp. 339 - 361 (2004)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…