Aydin, U.; Hickel, T.; Neugebauer, J.: Combining ab initio with data mining techniques: Solution enthalpy of hydrogen in transition metals. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Aydin, U.; Hickel, T.; Neugebauer, J.: High-Throughput Computation: The solution enthalpy of hydrogen in 3d metals derived from first principles. International workshop on Materials Discovery by Scale-Bridging High-Throughput, Bochum, Germany (2010)
Aydin, U.; Hickel, T.; Neugebauer, J.: The solution enthalpy of hydrogen derived from first principles along the series of 3d metals. Ab initio description of Iron and Steel: Mechanical Properties, 468. Wilhelm und Else Heraeus-Seminar, Ringberg, Germany (2010)
Aydin, U.; Ismer, L.; Hickel, T.; Neugebauer, J.: Chemical trends of the solution enthalpy of dilute hydrogen in 3d transition metals, derived from first principles. Summer School: Computational Materials Science, San Sebastian, Spain (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This work led so far to several high impact publications: for the first time nanobeam diffraction (NBD) orientation mapping was used on atom probe tips, thereby enabling the high throughput characterization of grain boundary segregation as well as the crystallographic identification of phases.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The prediction of materials properties with ab initio based methods is a highly successful strategy in materials science. While the working horse density functional theory (DFT) was originally designed to describe the performance of materials in the ground state, the extension of these methods to finite temperatures has seen remarkable…
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
In 2020, an interdepartmental software task force (STF) was formed to serve as a forum for discussion on topics related to software development and digital workflows at the MPIE. A central goal was to facilitate interdepartmental collaboration by co-developing and integrating workflows, aligning internally developed software, and rolling out…