Scheu, C.: Degradation analysis of electrocatalyst using identical location STEM measurements. 3rd Sino-German Symposium on Advanced Electron Microscopy of Interface Structures and Properties of Materials, Tsinghua University, Beijing, China (2018)
Garzón-Manjón, A.; Meyer, H.; Grochla, D.; Ludwig, A.; Scheu, C.: Insights in the structure and composition of nanoparticles for energy applications. Advanced Structural and Functional Materials, Krakow, Poland (2018)
Folger, A.; Scheu, C.: Tuning the properties of TiO2 nanowires by heat treatment in various atmospheres. Thermec’2018 – International conference on processing and manufacturing of advanced materials, Paris, France (2018)
Scheu, C.: Electron Energy-Loss Spectroscopy in a Scanning Transmission Electron Microscope Fundamentals and Applications. Talk at New Technology Research Centre, University of West Bohemia, Pilsen, Czech Republic (2018)
Scheu, C.: Combining ultimate resolution: Cs corrected STEM and 3D atom probe tomography. Grand Opening of UC Irvine Materials Research Institute (IMRI) & the First International Symposium on Advanced Microscopy and Spectroscopy, University of California, Irvine, CA, USA (2018)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: Photocatalysts, cocatalysts, and a case study on their structural design. 1st International Meeting on Alternative & Green Energies, Mohammedia, Morocco (2018)
Scheu, C.: Defects in AgSbTe2 thermoelectrics. 3 Phase, Interface, Component Systems (PICS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Marseille, France (2018)
Hengge, K. A.; Scheu, C.: Stability of a novel Pt/Ru catalyst for polymer electrolyte membrane fuel cells. 64. Metallkunde-Kolloquium, Lech am Arlberg, Austria (2018)
Hengge, K. A.; Scheu, C.: Novel electrodes for polymer based fuel cells. The 18th Israel Materials Engineering Conference (IMEC18), Dead Sea, Israel (2018)
Scheu, C.: 3D Nb3O7(OH) Nanoarrays – Structure, Stability and Functional Properties. Talk at Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Leipzig, Germany (2018)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests