Lymperakis, L.; Neugebauer, J.: Thermodynamics and adatom kinetics of non-polar GaN surfaces. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Petrov, M.; Lymperakis, L.; Neugebauer, J.; Stefaniuk, R.; Dluzewski, P.: Nonlinear Elastic Effects in Group III-Nitrides: From ab-initio to Finite Element Calculation. 17th International Conference on Computer Methods in Mechanics CMM-2007, Spala, Poland (2007)
Petrov, M.; Lymperakis, L.; Neugebauer, J.; Stefaniuk, R.; Dluzewski, P.: Nonlinear Elastic Effects in Group III-Nitrides: From ab-initio to Finite Element Calculation. 17th International Conference on Computer Methods in Mechanics CMM-2007, Spala, Poland (2007)
Lymperakis, L.; Neugebauer, J.: Ab-initio based multiscale analysis of the 5D configurational space of Grain Boundaries in Aluminum. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Petrov, M.; Lymperakis, L.; Neugebauer, J.: Nonlinear Elastic Effects in Group III-Nitrides. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Marquardt, O.; Wahn, M.; Lymperakis, L.; Hickel, T.; Neugebauer, J.: Implementation and application of a multi-scale approach to electronic properties of group III-nitride based semiconductor nanostructures. Workshop on Nitride Based Nanostructures, Berlin, Germany (2007)
Lymperakis, L.: Ab-initio based multiscale caclulations of Grain Boundaries in aluminum. 1. Harzer Ab initio Workshop, Clausthal-Zellerfeld, Germany (2006)
Lymperakis, L.; Neugebauer, J.: Kinetically stabilized ordering in AlGaN alloys. Institute of Fundamental Technological Research, Polish Academy of Sciences, Colloquium, Warsaw/Poland (2006)
Lymperakis, L.; Neugebauer, J.: Ab-initio based multiscale calculations of low-angle grain boundaries in Aluminum. DPG spring meeting, Dresden, Germany (2006)
Lymperakis, L.: Ab-initio based multiscale calculations of extended defects in condensed matter. Ab initio Description of Iron and Steel (ADIS2006), Ringberg Castle (2006)
Lymperakis, L.; Neugebauer, J.: Electronic properties of non-stoichiometric dislocation cores in GaN. Materials Research Society fall meeting, Boston, MA, USA (2005)
Lymperakis, L.; Neugebauer, J.: The role of strain fields, core structure, and native defects on the electrical activity of dislocations in GaN. The 6th International Conference on Nitride Semiconductors, Bremen (2005)
Lymperakis, L.; Neugebauer, J.: Formation of steps and vicinal surfaces on GaN (0001) surfaces: Implications on surface morphologies and surface roughening. DPG spring meeting, Berlin, Germany (2005)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Limits of Indium Incorporation on In1-xGaxN {0001} III- and N-Polar Surfaces: An Ab Initio Approach. 10th International Conference on Nitride Semiconductors, Washigton DC, USA (2013)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…