Aydin, U.; Hickel, T.; Neugebauer, J.: Solution enthalpy of hydrogen in 3d transition metals and neighboring elements. 1st Austrian/German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Bleskov, I.; Hickel, T.; Neugebauer, J.: Ab initio investigation of the stacking fault in Fe-based alloys. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Neugebauer, J.: Ab initio study of stability of Fe3Al surfaces in contact with an oxygen atmosphere. 1st Austrian/German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Point-defect energetics from LDA, PBE, and HSE: Different functionals, different energetics? 1.st Austrian/German Workshop on Computational Materials Design, Kramsach, Tyrol, Austria (2012)
Haghighat, S. M. H.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Effect of local stress state on the glide of ½a₀<111> screw dislocation in bcc-Fe. 1st Austrian-German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: The influence of magnetic excitations on the phase stability of metals and steels. ADIS2012: Thermodynamics and Kinetics, Ringberg, Germany (2012)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Thermodynamics and kinetics of H interaction with vacancies in fcc metals. ADIS 2012 Workshop, Ringberg, Germany (2012)
Nematollahi, A.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Thermodynamics of the strain-induced dissolution of cementite in pearlitic structure steel: An ab-initio study. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Race, C. P.; von Pezold, J.; Neugebauer, J.: Grain boundary migration via the nucleation and growth of islands in molecular dynamics. 1st Austrian-German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Elstnerová, P.; Friák, M.; Šob, M.; Neugebauer, J.: Prediction of the Ground State of NiN and Ni2N within the Quantum Mechanical Study. Multiscale Design of Advanced Materials, Brno, Czech Republic (2011)
Hickel, T.; Glensk, A.; Grabowski, B.; Neugebauer, J.: Ab initio up to the melting point: Integrated approach to derive accurate thermodynamic data for Al alloys. European Aluminium Association, European Aluminium Technology Platform, Working Group 5: Predictive Modelling, 5th workshop: ab initio modelling, Aachen, Germany (2011)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Start of a collaborative research project on the sustainable production of manganese and its alloys being funded by European Union with 7 million euros