Hecht, U.; Schilz, C. M.; Stratmann, M.: Influence of Relative Humidity during Film Formation Processes on the Structure of Ultrathin Polymeric Films. Langmuir 14, 23, pp. 6743 - 6748 (1998)
Stellnberger, K.-H.; Wolpers, M.; Fili, T.; Reinartz, C.; Paul, T.; Stratmann, M.: Electrochemical quartz crystal microbalance in modern corrosion research Study of the pretreatment of galvanized steel. Faraday Discussions 107, pp. 307 - 322 (1997)
Grundmeier, G.; Matheisen, E.; Stratmann, M.: Formation and Stability of Ultrathin Organosilane Polymers on Iron. Journal of Adhesion Science and Technology 10 (6), 6, pp. 573 - 588 (1996)
Lobnig, R. E.; Siconolfi, D. J.; Maisano, J.; Grundmeier, G.; Streckel, H.; Frankenthal, R. P.; Stratmann, M.; Sinclair, J. D.: Atmospheric Corrosion of Aluminum in the Presence of Ammonium Sulfate Particles. Journal Electrochem. Soc. 143, 4, pp. 1175 - 1182 (1996)
Lobnig, R. E.; Siconolfi, D. J.; Psota-Kelty, L.; Grundmeier, G.; Frankenthal, R. P.; Stratmann, M.; Sinclair, J. D.: Atmospheric Corrosion of Zinc in the Presence of Ammonium Sulfate Particles. Journal Electrochem. Soc. 143, 5, pp. 1539 - 1546 (1996)
Stratmann, M.; Leng, A.; Fürbeth, W.; Streckel, H.; Gehmecker, H.; Große-Brinkhaus, K. H.: The Scanning Kelvinprobe; a new technique for the in situ analysis of the delamination of organic coatings. Prog. Org. Coat. 27, 1-4, pp. 573 - 588 (1996)
Vago, E. R.; de Weldige, K.; Rohwerder, M.; Stratmann, M.: Electroreduction of oxygen on octadecylmercaptan self-assembled monolayers. Fresenius' Journal of Analytical Chemistry 353 (3-4), pp. 316 - 319 (1995)
Fürbeth, W.; Stratmann, M.: Investigation of the delamination of polymer films from galvanized steel with the Scanning Kelvinprobe. Fres. J. Anal. Chem. 353, 3-4, pp. 337 - 341 (1995)
Grundmeier, G.; Stratmann, M.: Nucleation and Growth of Plasma-Polymerised Hexamethyldisilazane on Iron -Substrates. Ber. Bunsenges. Phys. Chem. 99, 11, pp. 1387 - 1392 (1995)
Kamachi Mudali, U.; Reynders, B.; Stratmann, M.: Dissolution, passivation and composition of passive films in binary iron-nitrogen alloys. Materials Science Forum 185-188, pp. 723 - 730 (1995)
Reinartz, C.; Fürbeth, W.; Stratmann, M.: Adsorption and characterization of molecular adhesion promoter monolayers on iron sufaces under UHV conditions. Fres. J. Anal. Chem. 353, 5-8, pp. 657 - 660 (1995)
Lobnig, R. E.; Frankenthal, R. P.; Siconolfi, D. J.; Sinclair, D. J.; Stratmann, M.: Mechanism of Atmospheric Corrosion of Copper in the Presence of Submicron Ammonium Sulfate Particles. Journal of the Electrochemical Society 141 (11), pp. 2935 - 2941 (1994)
Lösch, R.; Stratmann, M.; Viefhaus, H.: Structure and Properties of Mercaptan-LB Films Prepared under Electrochemical potential control. Electrochimica Acta 39, 8-9, pp. 1207 - 1214 (1994)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…