Koyama, M.; Springer, H.; Merzlikin, S. V.; Tsuzaki, K.; Akiyama, E.; Raabe, D.: Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. International Journal of Hydrogen Energy 39 (9), pp. 4634 - 4646 (2014)
Wen, Y.; Peng, H.; Si, H.; Xiong, R.; Raabe, D.: A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Materials and Design 55, pp. 798 - 804 (2014)
Toji, Y.; Matsuda, H.; Herbig, M.; Choi, P.; Raabe, D.: Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Materialia 65, pp. 215 - 228 (2014)
Haghighat, S. M. H.; Schäublin, R. E.; Raabe, D.: Atomistic simulation of the a0 <1 0 0> binary junction formation and its unzipping in body-centered cubic iron. Acta Materialia 64, pp. 24 - 32 (2014)
Song, W.; Choi, P.; Inden, G.; Prahl, U.; Raabe, D.; Bleck, W.: On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel 100Cr6. Metallurgical and Materials Transactions A 45 (2), pp. 595 - 606 (2014)
Yao, M.; Pradeep, K. G.; Tasan, C. C.; Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia 72–73, pp. 5 - 8 (2014)
Alankar, A.; Field, D. P.; Raabe, D.: Plastic anisotropy of electro-deposited pure alpha-iron with sharp crystallographic <1 1 1>// texture in normal direction: Analysis by an explicitly dislocation-based crystal plasticity model. International Journal of Plasticity 52, pp. 18 - 32 (2014)
Gutiérrez-Urrutia, I.; Böttcher, A.; Lahn, L.; Raabe, D.: Microstructure-magnetic property relations in grain-oriented electrical steels: quantitative analysis of the sharpness of the Goss orientation. Journal of Materials Science 49 (1), pp. 269 - 276 (2014)
Ram, F.; Zaefferer, S.; Raabe, D.: Kikuchi bandlet method for the accurate deconvolution and localization of Kikuchi bands in Kikuchi diffraction patterns. Journal of Applied Crystallography 47, pp. 264 - 275 (2014)
Marceau, R. K. W.; Gutiérrez-Urrutia, I.; Herbig, M.; Moore, K. L.; Lozano-Perez, S.; Raabe, D.: Multi-Scale Correlative Microscopy Investigation of both Structure and Chemistry of Deformation Twin Bundles in Fe–Mn–C TWIP Steel. Microscopy & Microanalysis 19 (6), pp. 1581 - 1585 (2013)
Song, W.; von Appen, J.; Choi, P.; Dronskowski, R.; Raabe, D.; Bleck, W.: Atomic-scale investigation of epsilon and theta precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations. Acta Materialia 61 (20), pp. 7582 - 7590 (2013)
Krüger, T.; Gross, M.; Raabe, D.; Varnik, F.: Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. Soft Matter 9 (37), pp. 9008 - 9015 (2013)
Gutiérrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Coupling of Electron Channeling with EBSD: Toward the Quantitative Characterization of Deformation Structures in the SEM. JOM: the Journal of the Minerals, Metals & Materials Society (TMS) 65 (9), pp. 1229 - 1236 (2013)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…